
AOS-CX 10.08 Network
Analytics Engine Guide

6200, 6300, 6400, 8320, 8325, 8360, 8400

Switch Series

Published: September 2021
Edition: 2

| 2

Copyright Information
© Copyright 2022 Hewlett Packard Enterprise Development LP.

Open Source Code
This product includes code licensed under the GNU General Public License, the GNU Lesser General Public
License, and/or certain other open source licenses. A complete machine-readable copy of the source code
corresponding to such code is available upon request. This offer is valid to anyone in receipt of this
information and shall expire three years following the date of the final distribution of this product version
by Hewlett Packard Enterprise Company. To obtain such source code, send a check or money order in the
amount of US $10.00 to:

Hewlett Packard Enterprise Company
6280 America Center Drive
San Jose, CA 95002
USA

Notices
The information contained herein is subject to change without notice. The only warranties for Hewlett
Packard Enterprise products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional warranty.
Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein.

Confidential computer software. Valid license from Hewlett Packard Enterprise required for possession, use,
or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

Links to third-party websites take you outside the Hewlett Packard Enterprise website. Hewlett Packard
Enterprise has no control over and is not responsible for information outside the Hewlett Packard
Enterprise website.

Contents

Contents

Contents 3

About this document 7
Applicable products 7
Latest version available online 7
Command syntax notation conventions 7
About the examples 8
Identifying switch ports and interfaces 8
Identifying modular switch components 10

Aruba Network Analytics Engine Introduction 11
AOS-CX Web UI for Analytics introduction 11
Aruba Network Analytic Engine scripts introduction 11
Aruba Network Analytic agents introduction 12
Built-in scripts and agents 12
Aruba-certified scripts 13
Aruba Solutions Exchange (ASE) introduction 13
User-created scripts 13
Developer communities for the Network Analytics Engine 14

Aruba Solution Exchange (ASE) 14
GitHub 14
Airheads Community 14

Aruba Network Analytics Engine supported maximums 14

AOS-CX Network Analytics Engine (NAE) Design considerations 16
NAE factors that impact system resources 16
NAE deployment considerations 16
Considerations when writing an NAE agent 17

Aruba Network Analytics Engine framework 18
Configuration and state database 18
Time series database 18
AOS-CX REST API 19
Python and the REST API for scripts 19
"Sandboxes" for agent actions 20

Managing scripts 21
Managing NAE scripts across switch software updates 21
Viewing script details using the Web UI 22
Downloading a script using the Web UI 23
Uploading a script using the Web UI 23
Updating a script using the Web UI 25
Deleting a script using the Web UI 25
Getting information about scripts using the REST API 26
Uploading a script using the REST API 27
Updating a script using the REST API 27
Deleting a script using the REST API 28
Downloading a script from the switch using the REST API 28

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 3

Contents | 4

show running-config command output for agents and scripts 29
Script status 30

Managing agents 31
Viewing a list of agents installed on a switch using the Web UI 31
Viewing agent information using the Web UI 31
Finding alert details using the Web UI 35
Working with an Analytics time series graph 37

Customizing data displayed on the graph 38
Zooming in on the graph 39
Downloading the graph as animage or .csv file 39
Viewing an alert on the graph 40

Enabling a disabled agent using the Web UI 43
Disabling an agent using the Web UI 43
Deleting an agent using the Web UI 44
Creating an agent from an existing script using the Web UI 44
Changing the configuration of an agent using the Web UI 45
Getting information about agents using the REST API 46
Creating an agent from an existing script using the REST API 47
Enabling an agent using the REST API 48
Disabling an agent using the REST API 48
Changing the configuration of an agent using the REST API 49
Deleting an agent using the REST API 50

Procedure 50
Agent status 50
Behaviors when multiple agents monitor the same resource 51

Troubleshooting agent and script issues 52
Showing the current and maximum number of agents, monitors, and scripts 52
High switch CPU and memory usage are affecting switch performance 54
Downloading NAE support files 54

NAE support file content 55
Error: "Switch time and browser time are not in sync" 55
Analytics time series graph displays message instead of data: "Agent data not found, please
verify..." 56
Inaccurate or no data displayed in analytics time series graph 57
URI errors 58
Error: "The NAE Agent is not created...DB constraint violation errors" 58
Error: "The NAE Agent has Python errors." 59
Error: "Timeseries data cannot be generated...The URI is invalid or not configured" 59
Error: "The script syntax is invalid" 61
Error: "The script agent syntax is invalid" 61
Error: "Sandbox timed out while running script" 61
Error: "The agent instantiated sandbox has timed out" 62
Error: "Unable to parse condition expression..." 62
Error: "The CLI command is invalid" 63
Error: "Command failed: non-zero exit status" 64
Error: "The action is invalid" 65
ActionShell output error: "not available in enhanced secure mode" 65

Using the Aruba Solutions Exchange (ASE) 66
Finding NAE scripts on the ASE website 66
Finding NAE scripts on the ASE using the Web UI 66
Viewing recent changes to existing NAE solutions 67
Downloading or installing a script from the ASE using the Web UI 67
Downloading a solution from the ASE website to your workstation 68

NAE scripts repository on GitHub 70

Scripts and security 71

Scripts 72
Python version and library support 72

Python modules available 72
Third-party Python libraries available 74

REST API version support 74
Rules for script files 74
Script example 74
Parts of a script 76
Header 77
Import statements 78
Manifest 78

Required items 78
Optional items 78

Parameter definitions 79
ParameterDefinitions description 80

Agent class constructor 81
Graph 82
Title 83
on_agent_re_enable 84
on_agent_restart 84
on_parameter_change 85
Baselines for dynamic thresholds for monitors 85

Baseline workflow and considerations 86
Example of baselines in a time series graph 87
Example of a script that uses baselines 88
Baseline 89

ADCs 93
ADCList class 94
ADCEntry class 95

Monitors 97
URIs for monitors 98

Path component of the URI 98
Query component of the URI 99
Wildcard characters in monitored URIs 99
Parameters in monitored URIs 100
Slash (/) characters in monitored URIs 101
Attribute filters in monitored URIs 102
Constructing a URI using the AOS-CX REST API Reference 102

Aggregate operators 104
Aggregate functions 105
Nested aggregate functions and operators 107
Aggregate functions in monitors and conditions 107

Rules 108
Conditions 108

Clear conditions 109
Condition expression syntax 110
Durations, evaluation delays, and pauses in condition expressions 110
Conjunction (AND), disjunction (OR), and multiple subconditions 111
Function behavior when monitored URI does not contain wildcards 112
Function behavior when monitored URI has wildcards 113

Actions 114
Predefined actions 114

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 5

Contents | 6

ActionCLI, CLI action 114
ActionCustomReport 116
ActionShell, SHELL action 117
ActionSyslog, Syslog action 118

Callback actions 119
Clear actions 120
Alert level functions 121
Logging functions 122

Agents 123
Agents and user authority 123
Rules for agent names 123

Network Analytics Engine commands 124
show nae-agent 124
show nae-script 125
show running-config nae 127

HTTPS server commands 129
https-server rest access-mode 129
https-server session close all 130
https-server vrf 130
show https-server 132

Support and Other Resources 134
Accessing Aruba Support 134
Accessing Updates 134

Aruba Support Portal 134
My Networking 135

Warranty Information 135
Regulatory Information 135
Documentation Feedback 135

Chapter 1
About this document

About this document
This document describes features of the AOS-CX network operating system. It is intended for administrators
responsible for installing, configuring, and managing Aruba switches on a network.

Applicable products
This document applies to the following products:

n Aruba 6200 Switch Series (JL724A, JL725A, JL726A, JL727A, JL728A)
n Aruba 6300 Switch Series (JL658A, JL659A, JL660A, JL661A, JL662A, JL663A, JL664A, JL665A, JL666A,

JL667A, JL668A, JL762A)
n Aruba 6400 Switch Series (JL741A, R0X26A, R0X27A, R0X29A, R0X30A)
n Aruba 8320 Switch Series (JL479A, JL579A, JL581A)
n Aruba 8325 Switch Series (JL624A, JL625A, JL626A, JL627A)
n Aruba 8360 Switch Series (JL700A, JL701A, JL702A, JL703A, JL706A, JL707A, JL708A, JL709A, JL710A,

JL711A)
n Aruba 8400 Switch Series (JL375A, JL376A)

Latest version available online
Updates to this document can occur after initial publication. For the latest versions of product
documentation, see the links provided in Support and Other Resources.

Command syntax notation conventions

Convention Usage

example-text Identifies commands and their options and operands, code examples,
filenames, pathnames, and output displayed in a command window. Items that
appear like the example text in the previous column are to be entered exactly
as shown and are required unless enclosed in brackets ([]).

example-text In code and screen examples, indicates text entered by a user.

Any of the following:
n <example-text>

n <example-text>

n example-text

n example-text

Identifies a placeholder—such as a parameter or a variable—that you must
substitute with an actual value in a command or in code:

n For output formats where italic text cannot be displayed, variables are
enclosed in angle brackets (< >). Substitute the text—including the
enclosing angle brackets—with an actual value.

n For output formats where italic text can be displayed, variables might
or might not be enclosed in angle brackets. Substitute the text
including the enclosing angle brackets, if any, with an actual value.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 7

About this document | 8

Convention Usage

| Vertical bar. A logical OR that separates multiple items from which you can
choose only one.
Any spaces that are on either side of the vertical bar are included for
readability and are not a required part of the command syntax.

{ } Braces. Indicates that at least one of the enclosed items is required.

[] Brackets. Indicates that the enclosed item or items are optional.

… or
...

Ellipsis:
n In code and screen examples, a vertical or horizontal ellipsis indicates an

omission of information.
n In syntax using brackets and braces, an ellipsis indicates items that can be

repeated. When an item followed by ellipses is enclosed in brackets, zero
or more items can be specified.

About the examples
Examples in this document are representative and might not match your particular switch or environment.

The slot and port numbers in this document are for illustration only and might be unavailable on your
switch.

Understanding the CLI prompts
When illustrating the prompts in the command line interface (CLI), this document uses the generic term
switch, instead of the host name of the switch. For example:
switch>

The CLI prompt indicates the current command context. For example:
switch>

Indicates the operator command context.
switch#

Indicates the manager command context.
switch(CONTEXT-NAME)#

Indicates the configuration context for a feature. For example:
switch(config-if)#

Identifies the interface context.

Variable information in CLI prompts
In certain configuration contexts, the prompt may include variable information. For example, when in the
VLAN configuration context, a VLAN number appears in the prompt:
switch(config-vlan-100)#

When referring to this context, this document uses the syntax:
switch(config-vlan-<VLAN-ID>)#

Where <VLAN-ID> is a variable representing the VLAN number.

Identifying switch ports and interfaces
Physical ports on the switch and their corresponding logical software interfaces are identified using the
format:

member/slot/port

On the 6200 Switch Series

n member: Member number of the switch in a Virtual Switching Framework (VSF) stack. Range: 1 to 8. The
primary switch is always member 1. If the switch is not a member of a VSF stack, then member is 1.

n slot: Always 1. This is not a modular switch, so there are no slots.
n port: Physical number of a port on the switch.

For example, the logical interface 1/1/4 in software is associated with physical port 4 in slot 1 on member 1.

On the 6300 Switch Series

n member: Member number of the switch in a Virtual Switching Framework (VSF) stack. Range: 1 to 10. The
primary switch is always member 1. If the switch is not a member of a VSF stack, then member is 1.

n slot: Always 1. This is not a modular switch, so there are no slots.
n port: Physical number of a port on the switch.

For example, the logical interface 1/1/4 in software is associated with physical port 4 on member 1.

On the 6400 Switch Series

n member: Always 1. VSF is not supported on this switch.
n slot: Specifies physical location of a module in the switch chassis.

o Management modules are on the front of the switch in slots 1/1 and 1/2.
o Line modules are on the front of the switch starting in slot 1/3.

n port: Physical number of a port on a line module.

For example, the logical interface 1/3/4 in software is associated with physical port 4 in slot 3 on member 1.

On the 83xx Switch Series

n member: Always 1. VSF is not supported on this switch.
n slot: Always 1. This is not a modular switch, so there are no slots.
n port: Physical number of a port on the switch.

For example, the logical interface 1/1/4 in software is associated with physical port 4 on the switch.

If using breakout cables, the port designation changes to x:y, where x is the physical port and y is the lane when
split to 4 x 10G or 4 x 25G. For example, the logical interface 1/1/4:2 in software is associated with lane 2 on
physical port 4 in slot 1 on member 1.

On the 8400 Switch Series

n member: Always 1. VSF is not supported on this switch.
n slot: Specifies physical location of a module in the switch chassis.

o Management modules are on the front of the switch in slots 1/5 and 1/6.
o Line modules are on the front of the switch in slots 1/1 through 1/4, and 1/7 through 1/10.

n port: Physical number of a port on a line module

For example, the logical interface 1/1/4 in software is associated with physical port 4 in slot 1 on member 1.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 9

About this document | 10

Identifying modular switch components
n Power supplies are on the front of the switch behind the bezel above the management modules. Power

supplies are labeled in software in the format: member/power supply:
o member: 1.
o power supply: 1 to 4.

n Fans are on the rear of the switch and are labeled in software as: member/tray/fan:
o member: 1.
o tray: 1 to 4.
o fan: 1 to 4.

n Fabric modules are not labeled on the switch but are labeled in software in the format: member/module:
o member: 1.
o member: 1 or 2.

n The display module on the rear of the switch is not labeled with a member or slot number.

Chapter 2
Aruba Network Analytics Engine

Introduction

Aruba Network Analytics Engine Introduction
The Aruba Network Analytics Engine is a first-of-its-kind built-in framework for network assurance and
remediation. Combining the full automation and deep visibility capabilities of the AOS-CX operating system,
this unique framework enables monitoring, collecting network data, evaluating conditions, and taking
corrective actions through simple scripting agents.

This engine is integrated with the AOS-CX system configuration and time series databases, enabling you to
examine historical trends and predict future problems due to scale, security, and performance bottlenecks.
With that information, you can create software modules that automatically detect such issues and take
appropriate actions.

With the faster network insights and automation provided by the Aruba Network Analytics Engine, you can
reduce the time spent on manual tasks and address current and future demands driven by Mobility and IoT.

AOS-CX Web UI for Analytics introduction
The AOS-CX Web UI provides access to information related to Aruba Network Analytics Engine agents,
scripts, and alerts on the switch, including time-series data graphs and other information generated by the
enabled agents.

From the AOS-CX Web UI, select Analytics in the navigation pane to view information in the Analytics
Dashboard. You can display time-series graph panels for up to nine agents on the dashboard. However,
many more agents can be enabled on a switch.

From the Analytics Dashboard, you can open Analytics detail pages. Analytics detail pages allow you to
enable, disable, create, delete, or edit agents, upload scripts, and view detailed data about monitored
resources. Administrator rights are required for actions that modify an agent.

For more information about the Web UI, see the Introduction to the Web UI Guide.

Figure 1 Analytics Dashboard in theWebUI

Aruba Network Analytic Engine scripts introduction

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 11

Aruba Network Analytics Engine Introduction | 12

An Aruba Network Analytics Engine script is a Python script that defines which switch resources to monitor
and, optionally, rules that define what actions to take when certain conditions are true.

Examples of tasks a script can define include the following:

n Monitoring average CPU usage and sending a system log message when the CPU usage is greater than
70% for 5 minutes.

n Monitoring the connection state of a particular BGP neighbor and executing a CLI command when the
connection state transitions from UP to DOWN.

A script is used to create an agent, which is a specifically-configured executable instance of a script on a
switch. A single script can be the template for many different agents.

Aruba Network Analytic agents introduction
An Aruba Network Analytics Engine agent is a specifically-configured executable instance of an NAE script on
a switch. When the agent is enabled, it performs the tasks defined by the script. Agents have administrator
rights.

For scripts that provide configuration parameters, different agents can be configured to use specific
parameter values when performing the tasks defined by the script.

For example, a script that monitors the connection state of a particular BGP neighbor can define a
parameter to specify which BGP neighbor to monitor. From that script, you can do the following:

n You can create an agent to monitor a specific BGP neighbor by specifying that BGP neighbor as the value
of the parameter.

n You can create multiple agents—one for each BGP neighbor you want to monitor.
n When a new BGP neighbor is added, you can create an agent to monitor that neighbor without having to

change the script itself.

Some parameters that are integers—such as a CPU utilization threshold—can be changed for a given agent
after that agent has been created. Network administrators can change such parameters easily through the
Web UI—no programming skill is required.

Built-in scripts and agents
Built-in scripts and agents are installed on the switch before the switch is shipped from the factory. All
scripts and agents have information about their origin associated with them. Built-in scripts and agents
have an origin of "system" and are marked System Created in the Web UI.

Built-in scripts and agents cannot be deleted. You can enable, disable, and change the configuration of built-
in agents.

If you create an additional agent from a built-in script, that agent is considered a user-created agent, which
can be deleted.

In the output of the show running-config command:

n Built-in scripts are not displayed
n Built-in agents are displayed only if one of more parameters has been changed and saved.

The current software release includes a single built-in script and agent that monitors several system
resources:

n Built-in script: system_resource_monitor
n Built-in agent: system_resource_monitor.default

Aruba-certified scripts
Aruba-certified Network Analytics Engine scripts are written and tested by Aruba.

On the Aruba Solution Exchange, Aruba-certified scripts have the following tag: nae-aruba-certified

Figure 1 Script tags as shown on the Aruba Solution Exchange

Figure 2 Script tags as shown in theWebUI

Aruba Solutions Exchange (ASE) introduction
Aruba Solution Exchange (ASE) is a utility that allows users to dynamically create configurations for many
Aruba products. The exchange offers a set of solutions certified by Aruba for specific use cases.

The collective knowledge of the Aruba community powers the Solution Exchange. All users are encouraged
to create solutions, modify existing ones, and suggest ideas for new solutions.

Access to the Aruba Solution Exchange is available at:

https://ase.arubanetworks.com/

No login is required to browse the exchange or look at information about solutions. Downloading solutions
or viewing solution source code is free for anyone with a valid user account with the Aruba SSO
authentication system. If you do not have an existing account, register for a free Airheads Social account at:

http://community.arubanetworks.com

For more information about using the Aruba Solution Exchange, see https://ase.arubanetworks.com/docs

User-created scripts
The Aruba Network Analytics Engine is highly extensible through the use of scripts. You can create scripts or
find scripts created by other developers in the community to solve specific network issues.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 13

https://ase.arubanetworks.com/
http://community.arubanetworks.com/
https://ase.arubanetworks.com/docs

Aruba Network Analytics Engine Introduction | 14

Network Analytic Engine scripts must be written in Python. Although Python programming is beyond the
scope of this document, this document provides information about the structure and functions of Network
Analytics Engine scripts.

For more information about Network Analytics Engine scripts, see Scripts.

Developer communities for the Network Analytics Engine
There are several communities that facilitate the development, use, and sharing of scripts for the Aruba
Network Analytics Engine:

Aruba Solution Exchange (ASE)
The Aruba Solution Exchange (ASE) is the primary portal for Network Analytic Engine scripts. Aruba-certified
public scripts are posted to ASE. Developers can create their own Network Analytics Engine solutions and
post them for either private or public use. See the Aruba Solution Exchange at:

https://ase.arubanetworks.com/

GitHub
The NAE scripts repository on GitHub includes Aruba-certified Network Analytics Engine (NAE) scripts and
examples organized by feature or protocol and then by supported hardware platform. Developers can fork
and customize or enhance these scripts for their own use. See the repository at:

https://github.com/aruba/nae-scripts

Airheads Community
The Airheads community provides a place for members or participants to search for information, read and
post about topics of interest, and learn from each other. Guests (unregistered visitors) can browse or search
the community for information. Members (registered users) can post messages or comments, track
discussions, and get email notifications on posting activity and other community actions.

Within the Airheads community, there is a Developer Community group that is specific to APIs,
programming, and automation. The Developer Community is the recommended place to post questions
about the Aruba Network Analytics Engine (NAE).

See the Developer community at:

https://community.arubanetworks.com/t5/Developer-Community/bd-p/DeveloperCommunity

See the Airheads community at http://community.arubanetworks.com/

Aruba Network Analytics Engine supported maximums
8400 Aruba Switch Series

n Maximum number of scripts per switch: 50
n Maximum number of agents per switch: 100
n Maximum number of monitors per switch: 300
n Maximum script file size: 256 KB
n Number of days of time-series data to store: 400
n Amount of switch storage allocated to time-series data: 18 GB

Aruba 8320 and Aruba 8325 Switch Series

https://ase.arubanetworks.com/
https://github.com/aruba/nae-scripts
https://community.arubanetworks.com/t5/Developer-Community/bd-p/DeveloperCommunity
http://community.arubanetworks.com/

n Maximum number of scripts per switch: 25
n Maximum number of agents per switch: 50
n Maximum number of monitors per switch: 150
n Maximum script file size: 256 KB
n Number of days of time-series data to store: 400
n Amount of switch storage allocated to time-series data: 9 GB

Aruba 6300 and Aruba 6400 Switch Series

n Maximum number of scripts per switch: 10
n Maximum number of agents per switch: 10
n Maximum number of monitors per switch: 130
n Maximum script file size: 256 KB
n Number of days of time-series data to store: 45
n Amount of switch storage allocated to time-series data: 3.1 GB

Aruba 6200 Switch Series

n Maximum number of scripts per switch: 10
n Maximum number of agents per switch: 10
n Maximum number of monitors per switch: 130
n Maximum script file size: 256 KB
n Number of days of time-series data to store: 15
n Amount of switch storage allocated to time-series data: 1 GB

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 15

Chapter 3
AOS-CX Network Analytics Engine (NAE)

Design considerations

AOS-CX Network Analytics Engine (NAE) Design considerations
The Network Analytics Engine (NAE) feature within AOS-CX switches is a framework for automating the
detection of issues and automating root cause analysis. This document covers design considerations when
deploying NAE agents within a network.

NAE factors that impact system resources
There are several factors that need to be considered when deploying NAE within a network:

n CPU and memory: The number of agents and what the agents do within their callbacks can impact the
CPU and memory of the system. NAE agents are not running at all times and will only run when one of
their conditions are met for, at most, 30 seconds. Agents will only consume, at most, 10% of CPU and 64
MB of memory as well while running.

n Wildcards within monitors: The use of wildcards within an NAE monitor can increase the amount of
resource consumption. Wildcards allow the agent to monitor an entire set of resources, but the number
of resources covered can be a large amount. For example, monitoring the tx_dropped statistics for all
interfaces will result in a metric for each interface:
/rest/v1/system/interfaces/*?attributes=statistics.tx_dropped

Each NAE metric results in a unique time series for this statistic. In this particular case, a switch with 500
interfaces equates to 500 time series metrics. In order to provide a rich history of each time series metric, all
NAE time series data is written to persistent storage. As noted within the manual, time series data is collected
and stored every 5 seconds.

n Alerts: Every ActionShell and ActionCLI output is written to persistent storage to provide a history of
events encountered by an NAE agent. This is useful for troubleshooting events that occurred in the past
and collecting relevant details associated with when those events occurred. These actions consume
storage resources. Also, the amount of data collected by these commands must be considered.

n ADC’s: Application Data Collections (ADCs) are used to monitor traffic rates which can be utilized within
an NAE agent, but consume hardware resources used by ACLs, classifier policies, and other traffic
identifiers and filters. Hardware resources are limited based on platform. Please refer to the “show
resources” CLI command for a breakdown of hardware resource consumption.

NAE deployment considerations
It is highly recommended that any agent be thoroughly tested and vetted on a single or limited number
switches within the network prior to a wider deployment of such agent. NAE agents published by Aruba have
been tested for many customer deployments, but do not cover all cases. Customer networks can be unique
and may exhibit differences compared to a controlled lab environment.

All new NAE agents deployed within a customer network should be initially monitored to ensure that it is
performing according to expectations. The switch CPU and memory utilization can be reviewed through the
built-in System Resource Monitor NAE agent which provides the current and running history of resource
consumption. Storage usage can be monitored by reviewing the endurance utilization under the show

system resource-utilization command over time.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 16

AOS-CX Network Analytics Engine (NAE) Design considerations | 17

There have been instances where the initial deployment of an NAE agent within a customer network helped
identify network oddity or misconfiguration from the start. The initial review of any NAE alerts issued by this
agent would quickly point out these misconfigurations. After making the necessary switch or network
changes, any future alerts would be reduced. As an example, a high number of RX drops may indicate a bad
fiber cable. Replacement of this cable would then result in less or zero RX drops and the NAE agent will stop
issuing alerts.

NAE agents are published through the Aruba Solution Exchange (ASE) and, much like switch firmware, can be
updated at any time. It is recommended that customers periodically check the ASE website for any updates
to NAE agents that are used within their network.

Considerations when writing an NAE agent
Aruba publishes agents which take the design recommendations covered in this document into
consideration, but NAE agents can be written by 3rd party developers and customers. As a result, care
should be taken when writing an NAE agent. Areas to consider include, and are not limited to:

n The use of wildcards should be used sparingly in order to reduce the memory and storage used by the
agent.

n Alerts should not be triggered frequently in order to reduce the wear of the storage device.
n The thresholds on conditions shouldn’t trigger often in order to reduce the number of alerts and CPU

time needed to act on the conditions.
n Any outbound network connections can only access the default VRF.

https://ase.arubanetworks.com/

Chapter 4
Aruba Network Analytics Engine

framework

Aruba Network Analytics Engine framework
The AOS-CX operating system has been built for programmability. With the database-centric design and a
programmatic interface to the entire database schema, network operators have access to every network
function and state within the switch.

Central to this design is the Aruba Network Analytics Engine framework, which includes the following:

n Full integration with the AOS-CX network operating system for logging events, maintaining high
availability during switch failover events, and interacting through the Web UI, REST API, and CLI.

n A REST API that can access every switch resource and state.
n Scripts and agents that can be programmed not only to monitor switch resources, but also automatically

execute actions when certain conditions are met over time.
n A built-in Python interpreter.
n A Python sandbox that exists only while an agent executes an action. The sandbox has full access to the

internal database and the time series database.

Configuration and state database
The AOS-CX operating system is a modular, database-centric operating system. Every aspect of the switch
configuration and state information is modeled in the AOS-CX switch database and is accessible through the
REST API.

Developers can access a specific configuration, statistic, or status result for any aspect of the switch through
its REST URI. Switches that are members of a stack are treated as a single switch.

For example:

n The following URI accesses the link state information about interface 1/1/5:
/rest/v1/system/ports/1%2F1%2F5?attributes=link_state

n The following URI accesses the link state of all interfaces on the switch:
/rest/v1/system/interfaces/*?attributes=link_state

n The following URI accesses the number of received packets on interface 1/1/5:
/rest/v1/system/interfaces/1%2F1%2F5?attributes=statistics.rx_packets

n The following URI accesses the link state information about interface 2/1/5 (stack member 2, slot 1, port
5):

/rest/v1/system/ports/2%2F1%2F5?attributes=link_state

Time series database
The Aruba Network Analytics Engine includes a built-in time series database. Time-series data about the
resources monitored by agents are automatically collected and presented in graphs in the switch Web UI.
The database makes the data seamlessly available to agents that use rules that evaluate network conditions
over time.

Old time-series data is removed automatically either as the storage space on the switch is used, or as the
maximum number of days of data is reached. The amount of storage space consumed at any given time

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 18

Aruba Network Analytics Engine framework | 19

depends on the number of switch resources being monitored at that time. Each monitored resource creates
one time series. Each time series consumes approximately 240 KB of storage for each day.

When creating a script, software developers do not interact with this database directly. Use of the database
is automatically handled by the Monitor and Rule functions.

AOS-CX REST API
Switches running the AOS-CX software are fully programmable with a REST (REpresentational State Transfer)
API, allowing easy integration with other devices both on premises and in the cloud. This programmability—
combined with the Aruba Network Analytics Engine—accelerates network administrator understanding of
and response to network issues.

The AOS-CX REST API enables programmatic access to the AOS-CX configuration and state database at the
heart of the switch. By using a structured model, changes to the content and formatting of the CLI output
do not affect the programs you write. And because the configuration is stored in a structured database
instead of a text file, rolling back changes is easier than ever, thus dramatically reducing a risk of downtime
and performance issues.

The AOS-CX REST API is a web service that performs operations on switch resources using HTTPS POST, GET,
PUT, and DELETE methods.

A switch resource is indicated by its Uniform Resource Identifier (URI). A URI can be made up of several
components, including the host name or IP address, port number, the path, and an optional query string.
The AOS-CX operating system includes the AOS-CX REST API Reference, which is a web interface based on
the Swagger UI. The AOS-CX REST API Reference provides the reference documentation for the REST API,
including resources URIs, models, methods, and errors. The AOS-CX REST API Reference shows most of the
supported read and write methods for all switch resources.

Python and the REST API for scripts
Network Analytics Engine scripts are written in Python, and the Network Analytics Engine provides a built-in
Python interpreter that is used when validating scripts and creating agents from scripts.

Python is the go-to language for network engineers:

n Python is high-level and human-readable.
n Python is popular with an active development community.
n There are many libraries (code written for you that you can use in your programs) available.

Python and the REST API to the AOS-CX database provide powerful tools to support network automation.
By using Python and the REST API, you can move far beyond CLI scripting in network automation.

In the past, a network engineer might use Perl scripts to automate show and configure CLI commands. This
scheme provided some automation, but it was inefficient because it still used the CLI to interact with the
switch. CLI inputs and outputs are in an unstructured, human-readable format. You must use text
processing based on specific CLI output to extract the information you want.

For example, you would have to write code to detect a MAC address in the large continuous string of text
that is the CLI output. The CLI output might have many things to make it human-readable, such as table
formatting, column headings, introductory text, and so forth, and the way MAC addresses are presented
can vary by CLI, operating system version, and sometimes even by individual command output.

In contrast, by using programmatic APIs such as the AOS-CX REST API, you can get the information you are
looking for in a predictable and structured way. For example, you can ask for and get just the MAC address.

Although Python programming is beyond the scope of this document, this document provides information
about the structure and functions of Network Analytics Engine scripts.

"Sandboxes" for agent actions
When an agent performs an action, the action is performed in a "sandbox" that is created when the action
starts and removed when the action completes. The sandbox is in the default VRF, so it does not have
access to the management network.

A sandbox is an isolated, tightly controlled environment in which programs can be run. Sandboxes restrict
what a program can do, giving it the appropriate permissions and computing resources without allowing it
access to the entire computing environment.

This design has the following benefits:

n Agents coexist and are prevented from using an excessive amount of CPU resources.
n Agents can benefit from the high-availability features of AOS-CX. During a switch failover event, the

daemon that handles the sandbox can recover its state information and continue operations as before.
n Agents are prevented from accessing sensitive information—such as certificate files—in the switch

operating system.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 20

Chapter 5
Managing scripts

Managing scripts
You can view a list of scripts and information about specific scripts on the switch using any of the following
interfaces:

n Web UI Analytics panel on theOverview page

TheAnalytics panel shows the total number of scripts, agents, and monitors compared to the total number
supported on the switch.
n Web UI Analytics dashboard
n REST API GET method on the nae_scripts resource
n CLI show nae-script command

Managing NAE scripts across switch software updates
After you update the switch software to a new release or install an older software release on the switch,
some Aruba Network Analytics Engine (NAE) scripts might not be valid. A script might not be valid because
the script uses a URI or API function that is not valid on that software release. The existing scripts might
generate errors, and the NAE data might not be valid until you upload the new scripts and clear the NAE
data.

Prerequisites
The new switch software has been installed on the switch.

Procedure

1. Clear the NAE data by entering the clear nae-data command from the manager context.

switch# clear nae-data

2. For each script that is not marked System Created in the Web UI, locate the version of the script that
supports the software release running on the switch.
n For Aruba-certified NAE scripts, the Aruba Solutions Exchange (ASE) includes tags that indicate the

minimum and maximum supported software release.
n For switches running 10.01 and later software releases, when you select the ASE download button

in the Web UI, the Web UI displays only the Aruba-certified NAE scripts that are supported on the
software release running on the switch.

n For scripts that are not Aruba-certified NAE scripts downloaded from the ASE, see the information
provided by the script author about which script version is supported.

3. Follow the instructions for updating a script.

The steps to update a script depend on the switch software release version that was running when
the script was installed.

4. On the Analytics Dashboard, locate and close any time series graph panels for the default agent from
the previous software release.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 21

Managing scripts | 22

The default agent is created from the built-in script. The name of the agent is based on the name of
the built-in script. Built-in scripts and agents have an origin of "system" and are marked System

Created in the Web UI. Built-in scripts and their agents are updated automatically. However,
sometimes the time series graph panel for the previous default agent is not closed during the update.
After the software update, instead of graphed data, such panels show an error message beginning
with: Agent data not found.

Viewing script details using the Web UI
Prerequisites
You must be logged in to the AOS-CX Web UI.

Procedure

1. From the Overview page, look at theAnalytics panel to view the total number of scripts, agents, and
monitors compared to the total number supported on the switch.

For example, Scripts: 7/25 indicates that there are total of seven scripts out of a maximum of 25
scripts supported on this switch.

2. Select Analytics from the AOS-CX Web UI navigation pane. The Analytics Dashboard is displayed.
3. The Scripts panel in the Analytics Dashboard shows a list of the scripts available on the switch.

4. From the Scripts panel, select a link to a specific script to display the Script Details page.

You can view the following script details.

n Script Details panel: Shows script information, and if the script is system created. You can select the +
sign to create an agent from the script.

n Script Parameters panel: Shows a list of parameters configured in the script. Select a parameter to
display a dialog box with a description of the parameter.

n Script Contents panel: Shows the programmatic contents of the script. You can click the down arrow
to download the script.

n Script Details panel: Shows script information, and if the script is system created. You can select the +
sign to create an agent from the script.

n Script Parameters panel: Shows a list of parameters configured in the script. Select a parameter to
display a dialog box with a description of the parameter.

n Script Contents panel: Shows the programmatic contents of the script. You can click the down arrow
to download the script.

Downloading a script using the Web UI
You may want to change a downloaded script and upload it again after making changes. You can download
a script and save the file to the specified location.

Prerequisites
You must be logged in to the AOS-CX Web UI.

Procedure

1. Select Analytics from the navigation pane.
2. In the Analytics Dashboard, in the Scripts panel, click Scripts to display the Script Management page.

3. Select a script row (not the script link) and click Download to download the script.

You can also download a script from the Script Details page, in the Script Contents panel, where you

see the button.
4. In the download dialog box, you can either open the script file or save the file.

Saving will overwrite any existing file in the specified location with the same name.

To download the script, click OK. To cancel this operation, click Cancel.

Uploading a script using the Web UI

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 23

Managing scripts | 24

Prerequisites
You must be logged in to the AOS-CX Web UI with administrator rights.

Procedure

1. Select Analytics from the navigation pane.
2. In the Analytics Dashboard, in the Scripts panel, click Scripts to display the Script Management page.
3. In the Script Management page, click Upload.
4. The Upload Script dialog box is displayed where you can specify a script file to upload. You can either

drag and drop a file or browse to select the file to upload. Click Next to continue with the upload or
click Cancel.

5. In the Upload Script dialog box, do the following:
a. Verify that the correct script is displayed.
b. Optionally, select Save running config to startup.

If you do not save the running configuration to the startup configuration, the change is not
preserved when the switch is rebooted.

c. To upload the script, click Upload. To cancel this operation or to upload a different script than
the script that is displayed, click Back.

6. If the name of the script as shown in the script manifest matches the name of the existing script,
when you upload the script, the Aruba Network Analytics Engine (NAE) does the following:

If the name of the script as shown in the script manifest matches the name of the existing script, a
confirmation dialog box is displayed. Confirm that you want the existing script to be updated.
n Displays a message that a script with the same name exits, and asks you to confirm that you want

to update the existing script.
n Deletes the existing script and agents
n Replaces the existing script with the new script
n Recreates the agents with the same parameters that were used before the script was updated.

If the upload is successful, a success message is displayed. The new script is added to the list of available
scripts, or the existing script is updated.

If the upload is unsuccessful, an error is displayed indicating what parts of the script manifest are invalid.

If the script has a syntax error but it contains the required manifest, the upload will complete. However, the
status field will show an error indicator. If you go to the Script Details page, you can get more details on the
error.

Updating a script using the Web UI
Prerequisites
You must be logged in to the AOS-CX Web UI with administrator rights.

Procedure

1. If the new script has the same name as the existing script, and the existing script was installed while
the switch was running AOS-CX software version 10.03 or later, upload the new script:

The name in the manifest of the script must match the name of the script in the Scripts panel of the
Analytics Dashboard exactly. For example, a script with a version number in the name does not
match a script that does not include a version number in the name. The script file name is not
required to match the script name in the manifest. For example, the script file name can include a
version number.

If the name of the script as shown in the script manifest matches the name of the existing script,
when you upload the script, the Aruba Network Analytics Engine (NAE) does the following:
n Displays a message that a script with the same name exits and asks you to confirm that you want

to update the existing script.
n Deletes the existing script and agents
n Replaces the existing script with the new script
n Recreates the agents with the same parameters that were used before the script was updated.

If the monitors in the new script and the existing script are the same, previously collected time-series
data is preserved when the script is updated. Clearing the NAE data is not required.

2. If the name of the new script does not match the name of the existing script, or the existing script
was installed while the switch was running an AOS-CX software version earlier than 10.03, do the
following:
a. Delete the existing script. When you delete a script, the agents are deleted automatically.
b. Upload the new script.
c. Clear the NAE data by entering the clear nae-data command from the manager context.

switch# clear nae-data

d. Create agents associated with the new script.
e. Add time series graph panels for the agents to the Analytics Dashboard.

Deleting a script using the Web UI

Deleting a script also deletes all agents associated with that script.

Prerequisites
You must be logged in to the AOS-CX Web UI with administrator rights.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 25

Managing scripts | 26

Procedure

1. Select Analytics from the navigation pane.
2. In the Analytics Dashboard, in the Scripts panel, click Scripts to display the Script Management page.
3. Select a script row (not the script link) and click Delete.

4. In the confirmation dialog box, do the following:
a. Optionally, select Save running config to startup. If you do not save the running

configuration to the startup configuration, the change is not preserved when the switch is
rebooted.

b. To delete the script, click Confirm. To cancel, click Cancel.

Getting information about scripts using the REST API
Instructions and examples in this document use an IP address that is reserved for documentation,
192.0.2.5, as an example of the IP address for the switch. To access your switch, you must use the IP
address or hostname of that switch.

Prerequisites
You must be logged in to the switch REST API.

Procedure

n To get detailed information about a specific script, use the GET method on the URI of the script.

This example gets information about the script named
com.arubanetworks.mac_arp_count_monitor:

GET https://192.0.2.5/rest/v1/system/nae_scripts/com.arubanetworks.mac_arp_count_monitor

The following example is the response body for the request. The entire script is returned in base64 format.
Because of the length of the script, the example shows only part of the script.

{

"author": "Aruba Networks",

"description": "MAC address learned on VLAN ID and number of neighbors learned

using ARP",

"expert_only": false,

"nae_parameters": {

"Vlan_Id": "/rest/v1/system/nae_scripts/mac_arp_count_monitor/nae_

parameters/Vlan_Id"

},

"name": "mac_arp_count_monitor",

"origin": "user",

"script": "IyAtKi0gY29XBUCAgICpdGRvcih1cmky...LCAnQVJQIFRhYmxlIENvdW50JykK",

"status": {

"state": "VALIDATED"

},

"tags": ['bridging','vlan','mac','neighbors','arp']

"version": "1.0"

}

n To get a list of all the scripts, use the GET method on the URI of the nae_scripts collection of the script.

For example:
GET https://192.0.2.5/rest/v1/system/nae_scripts

Example response:

[

"/rest/v1/system/nae_scripts/system_resource_monitor",

"/rest/v1/system/nae_scripts/mac_arp_count_monitor",

"/rest/v1/system/nae_scripts/ospf_neighbor"

]

Uploading a script using the REST API
Instructions and examples in this document use an IP address that is reserved for documentation,
192.0.2.5, as an example of the IP address for the switch. To access your switch, you must use the IP
address or hostname of that switch.

Prerequisites

n You must be logged in to the switch REST API with a user name that has administrator rights.
n The switch REST API access mode must be read-write.
n The script must be encoded in base64 format.

Scripts you download from the Aruba Solution Exchange website (instead of through the switch Web UI) or
the GitHub repository are not in base64 format. You must encode those scripts before you upload them.

Procedure
Use the POST method to upload the script to the nae_scripts resource collection.

For example:

POST https://192.0.2.5/rest/v1/system/nae_scripts

{

"name": "port_admin_state_monitor",

"expert_only":false,

"script": "<script_content_encoded_in_base64_format>"

}

In the example:

n The name of the script is: port_admin_state_monitor
n The expert_only parameter indicates whether it is recommended that someone using the script have

expert knowledge about the script. Typically, this parameter is false.
n <script_content_encoded_in_base64_format> is the text string of the script after it is encoded in base64

format. For an example of a script in base64 encoded format, see Script example.

If the script name in the Manifest of the new script exactly matches the name of an script that has already
been uploaded, the upload fails with a message that informs you that the script already exists. You can use
the PUT method to update the existing script.

If you are uploading a script to replace an existing script, but the script name in the Manifest is not an exact
match, you must delete the script you want to replace.

Updating a script using the REST API

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 27

Managing scripts | 28

Instructions and examples in this document use an IP address that is reserved for documentation,
192.0.2.5, as an example of the IP address for the switch. To access your switch, you must use the IP
address or hostname of that switch.

Prerequisites

n You must be logged in to the switch REST API with a user name that has administrator rights.
n The switch REST API access mode must be read-write.

Procedure

1. If the name of the script in the Manifest is an exact match to the name of the existing script, and the
existing script was installed while the switch was running AOS-CX software version 10.03 or later, use
the PUT method to update the script.

When the PUT method is used, the existing script and agents are deleted, the script is replaced, and
the agents are automatically recreated with the same parameters that were used before the script
was updated. If the monitors in the new script and the existing script are the same, previously
collected time-series data is preserved when the script is updated.

2. If the existing script was installed while the switch was running an AOS-CX software version earlier
than 10.03, or the script name in the Manifest does not match the name of the existing script—for
example one has a version number in the name and the other does not—you must delete the
existing script and then upload the new script:
a. Use the DELETE method to delete the script.

When you delete a script, all associated agents are deleted automatically.
b. Use the POST method to upload the modified script.
c. Clear the NAE data.
d. Create agents associated with the new switch.

Deleting a script using the REST API
Instructions and examples in this document use an IP address that is reserved for documentation,
192.0.2.5, as an example of the IP address for the switch. To access your switch, you must use the IP
address or hostname of that switch.

Deleting a script also deletes all agents associated with that script.

Prerequisites

n You must be logged in to the switch REST API with a user name that has administrator rights.
n The switch REST API access mode must be read-write.

Procedure
To delete a script, use the DELETE method on the URI of the script.

The following example deletes the script: com.myco.bgp_mon.
DELETE https://192.0.2.5/rest/v1/system/nae_scripts/com.myco.bgp_mon

Downloading a script from the switch using the REST API

Instructions and examples in this document use an IP address that is reserved for documentation,
192.0.2.5, as an example of the IP address for the switch. To access your switch, you must use the IP
address or hostname of that switch.

Prerequisites
You must be logged in to the switch REST API.

Procedure
Use the GET method on the URI of the script.

This example downloads script named com.arubanetworks.mac_arp_count_monitor.
GET https://192.0.2.5/rest/v1/system/nae_scripts/com.arubanetworks.mac_arp_count_monitor

The following example is the response body for the request. The entire script is returned in base64 format.
Because of the length of the script, the example shows only part of the script.

{

"author": "Aruba Networks",

"description": "MAC address learned on VLAN ID and number of neighbors learned

using ARP",

"expert_only": false,

"nae_parameters": {

"Vlan_Id": "/rest/v1/system/nae_scripts/mac_arp_count_monitor/nae_

parameters/Vlan_Id"

},

"name": "mac_arp_count_monitor",

"origin": "user",

"script": "IyAtKi0gY29XBUCAgICpdGRvcih1cmky...LCAnQVJQIFRhYmxlIENvdW50JykK",

"status": {

"state": "VALIDATED"

},

"version": "1.0"

}

show running-config command output for agents and
scripts
Built-in scripts are not included in the output of the show running-config command.

A built-in agent is included in the output of the show running-config command only if one or more of the
agent parameters has been modified and saved.

User-created scripts and agents are included in the output of the show running-config command.

The output of the show running-config command includes the following information for scripts and
agents:

n The name of the script.
n The value of the expert_only parameter. Typically, this parameter has a value of false.
n The script code in base64 format.
n The name of the agent.
n The value of the enabled parameter.
n The name of each agent parameter, followed by its value in base64 format.

The following example shows the output of show running-config for a user-created NAE script and one
agent that monitors a route count. The name of the script is: route_count_monitor. The name of the agent
is: route_count_instance1.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 29

Managing scripts | 30

The entire script is returned in base64 format. Because of the length of the script, the example shows only
part of the script.

switch# show running-config

...

nae-script route_count_monitor false IyAtKi0gY29kaW5nOiB1dGYtOCAtK

i0NCiMNCiMgQ29weXJpZ2h0IChjKSAyMDE3IEhld2xldHQgUGFja2FyZCBFbnRlcnB

...

yaXNlIERldmVsb3BtZW50IExQDQojDQojIExpY2Vuc2VkIHVuZGVyIHRoZSBBcGFja

nae-agent route_count_monitor route_count_instance1 false upper_co

unt_threshold:MTAwMDA= vrf_name:ZGVmYXVsdA== lower_count_threshold

:OTUwMA==

...

Script status
A script can have the following status values:

CREATED
The script has been uploaded to the switch, but script validation has not begun.

ERROR
The script validation process detected an error that would result in execution errors. Resolve the error by
modifying the script.

VALIDATING
The script syntax and components (manifest, parameters, monitor, condition, and action) are in the
process of being validated.

VALIDATED
The script syntax and components (manifest, parameters, monitor, condition, and action) have been
validated and no errors have been found.

Chapter 6
Managing agents

Managing agents
You can view a list of agents and information about specific agents on the switch using any of the following
interfaces:

n Web UI Analytics panel on theOverview page

TheAnalytics panel shows the total number of scripts, agents, and monitors compared to the total number
supported on the switch.
n Web UI Analytics dashboard
n REST API GET method on the nae_agents resource
n CLI show nae-agent command

Viewing a list of agents installed on a switch using the
Web UI
Prerequisites
You must be logged in to the AOS-CX Web UI.

Procedure

1. Select Analytics from the ArubasOS-CX Web UI navigation pane. The Analytics Dashboard is
displayed.

2. TheAgents panel in the Analytics Dashboard shows a list of the agents installed on the switch, along
with the status of each agent.

Viewing agent information using the Web UI
You can view Analytics agent information including: agent status, script information, agent parameters, one
or more time series graphs, and any alerts generated.

Prerequisites

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 31

Managing agents | 32

n You must be logged in to the Web UI.
n Ensure that the switch and the client where Web UI is running are set to use NTP or to a time zone based

on UTC time. Otherwise, NAE agent data might be incorrect or missing.

For example, if the time on switch is set to 2 hours ahead of the client manually instead of by changing the
time zone offset, the agent data is populated according to the new time on switch. If the switch time is set
back to match client time later, the Time Series Database does not overwrite the old data. Therefore the
client Web UI shows inaccurate data.

Procedure

1. From the Overview page, look at theAnalytics panel to see the total number of agents in critical,
major, and minor status. If the panel is outlined in red, it indicates agent status issues.

2. To go to the Analytics Dashboard, select theAnalytics link in the Analytics panel on the Overview
page.

View the following information on the Analytics Dashboard:

n Top banner: Shows the number of agents with each type of status.
n Agents panel: Lists the agents installed on the switch and indicates the status of each agent.

If there is an error in an agent, the Agents panel shows an error icon next to the agent status.
Optionally, you can add an Analytics agent time series graph to the Analytics Dashboard by clicking the
+ plus sign next to any agent listed in the Agents panel.
The time series graph shows data collected by the Analytics agent. If an agent has multiple time series
graphs, the graph displayed on the Analytics Dashboard is specified by the script. You cannot choose

which graph to display on the Analytics Dashboard, but you can see all the graphs in the Agent Details
page.
Click theAgents link to display the Agent Management page. On this page you can create, edit, delete,
enable, and disable an agent.

n Scripts panel: Lists available scripts.
Select a script from the list to display the Script Details page where you can view script details, create an
agent to run the script, and download the script.
Click the Scripts link to display the Script Management page. On this page you can upload, download
or delete a script, create an agent, and access the Aruba Solution Exchange to find more scripts.

n Alerts panel: Lists alerts generated by all agents.
Select an alert in the list and click Details to display the Alert Details dialog box.
Click theAlerts link to display a list of the alerts with information on the rule and actions for each alert.

n Time series graphs: If an agent time series graph has been added to the Analytics Dashboard, the
graph is outlined in the agent status color. Agents can have more than one time series graph, but only
one graph for the agent is displayed in the Analytics dashboard. Click the link in the graph to display the
Agent Details page.

3. From the Analytics Dashboard, Agents panel, select the link to a specific agent. The Agent Details page
is displayed.

View the following information from the Agent Details page:
n Agent Details panel: Shows information about the agent.

Select the Edit button to enable or disable an agent and modify agent parameters.
Select the View Script button to display the Script Details page where you can view script
information, create an agent to run the script, and download the script.

n Status panel: Shows the status of the agent and when the status was last updated. For some
agents, you may see additional information. For example:
System Created

If the Status panel includes the statement System Created, the agent cannot be deleted.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 33

Managing agents | 34

Baseline Thresholds
If the Status panel includes Baseline Thresholds, the agent can learn about the activity being
measured and set low thresholds and high thresholds based on what it learns. The Baseline
Thresholds information shown in the Status panel includes the number of thresholds in the
following states:

Active
When a baseline threshold is in the active state, the agent has learned and established the high
and low thresholds, and the agent executes actions and generates alerts based on those low
or high thresholds.

Inactive
When agent is disabled, the baseline stops collecting data and updating thresholds. After the
agent is re-enabled, the baseline goes into the learning state again.

Learning
While a baseline threshold is in the learning state:

o The agent gathers data related to that baseline until the initial learning period completes. Low
and high thresholds are determined using the learning algorithm defined in the script, and are
set only after learning state is completed.

o Default thresholds (if specified in the script) are used to determine whether to execute actions
or generate alerts.

Baseline thresholds remain in the learning state for a script-specified period of time after the
agent is enabled.
Selecting Baseline Thresholds displays a dialog box that shows additional information about all
the baselines for the agent, including the name, the associated monitor, state, and the current
learned low and high thresholds.

If there is an agent error, an error indicator is shown and you can hover over it for more
information.

n Parameters panel: Shows the parameters used by the agent. For example, a parameter can be a
threshold value that, when breached, causes the agent status to change and an alert to be
generated. Selecting a parameter displays the description in a dialog box.

n Time Series graph: Graphs the data collected by the agent over time. Agents might have more
than one time series graph. Alert indicators and configuration checkpoints are overlaid on the
graph.
Alert indicators can include: a red or yellow triangle for an alert, a green triangle for return to
normal, a blue triangle for an alert on several resources being monitored. An example of an alert
on several resources: when monitoring multiple interfaces (wildcard), if an interface goes down, a
red alert is generated. If another interface goes down, then a blue alert is generated. A green alert
will not be generated until all the interfaces are back up.
Configuration checkpoints are shown as purple diamonds on the graph.
Clicking an alert indicator on the graph displays the Alert Details dialog box.

n Alerts panel: Lists alerts.
Select theAlerts link to display a list of the alerts with information on the rule and actions for
each alert.
Select an alert and click Details to display the Alert Details dialog box.
Select an alert and click Navigate to change the time series graph to show the time period with
this alert.

Finding alert details using the Web UI
You can view details on the alerts displayed in the Web UI.

Prerequisites
You must be logged in to the Web UI.

Procedure

1. Select Analytics from the navigation pane.
2. In the Analytics Dashboard, the Alerts panel lists the alerts for all agents.

3. To see the alerts for a specific agent, in the Analytics Dashboard Agents panel or Alerts panel, select an
agent.

4. In the Agent Details page, the agent alerts are listed in the Alerts panel.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 35

Managing agents | 36

5. In the Alerts panel, select an alert and click Details to view the Alert Details dialog box. To close the
dialog box, click Close.
You can also access alert details directly from the Analytics Dashboard by selecting an alert in the
Alerts panel and clickingDetails.

6. TheAction Result(s) in Alert Details dialog box might include additional details about actions and
links to the action result output.

To view the Action Result Output dialog box for an action, click theOutput link.

Working with an Analytics time series graph
Data collected by an Analytics agent is displayed in the Web UI in one or more time series graphs. An agent
has at least one graph. An agent can have multiple graphs as specified in the script, but only one graph
represents the agent on the Analytics dashboard. The graph that represents the agent on the Analytics
dashboard is specified in the script.

If the Analytics dashboard does not include a graph for an agent, you can add the graph that represents that
agent from Analytics dashboard. Graphs on the Analytics dashboard represent a live view only. The graph
customization toolbar is not available from the Analytics dashboard.

The Agent Details page displays all the graphs for an agent, with each graph displayed in a panel.

Configuration checkpoints and alert indicators are overlaid on the graph. Configuration checkpoints are
shown as purple diamonds. Alert indicators can include the following:

n A red or yellow triangle for an alert
n A green triangle for a return to normal
n A blue triangle for an alert on several resources being monitored.

The graph displays alerts for all metrics being monitored. However, time series graphical information can be
shown for a maximum of eight metrics. The metrics that are being shown on the graph are listed at the
bottom of the graph.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 37

Managing agents | 38

n Customizing data displayed on the graph on page 38
n Zooming in on the graph on page 39
n Downloading the graph as animage or .csv file on page 39
n Viewing an alert on the graph on page 40

Customizing data displayed on the graph
There are several ways you can customize the data displayed on a time series graph to show more or less
data.

Procedure

1. View a tooltip for each data point on the graph by hovering the cursor over the data point.

The tooltip displays the date, time range, and min-max range.

2. Hover over a specific item in the legend following the graph to show only that specific data line on the
graph. The other data will be less visible.

From the graph shown on the Agent Details page, click the Configure Chart button to open the
Customize Chart dialog box.
n The default mode is Automatic Monitoring, where the most meaningful monitors and resources

are automatically selected to display on the agent graph. To customize what data (monitors and
resources) you want displayed on the agent time series graph, select Customize Monitoring.

n You can sort and filter the Show column. If a monitor is a wildcard type, then you see a different
icon from the check box, where you can click and select subresources under that monitor.

The graph displays alerts for all metrics being monitored. However, the graph can show graphed data
for a maximum of eight metrics at a time. The metrics that are being shown on the graph are listed at
the bottom of the graph. You can choose which metrics to show. To remove the metric from the
graph, clear the box in the Show column of the metric you want to remove. To show a metric in the
graph, select the box in the Show column of the metric you want to display.
n The Resources Selected column shows how many total resources are selected out of the total

available resources.
n If a monitor can have an aggregation function, that function is displayed in the Aggregation

column.

Zooming in on the graph
There are several different ways to zoom in on a specific time period on the time series graph.

Procedure

1. Zoom in and out on the graph by selecting a zoom level from the options displayed at the top of the
time series graph: 1 hour, 1 day, 10 days, 30 days, 90 days, 180 days, 1 year. You can also select
Custom to enter a specific date and time range.

2. Or you can highlight a custom range of data on the graph as follows:
a. Position the cursor on the time axis of the graph until a vertical line appears through the time.
b. Drag the vertical line to the left or right to the beginning or end of the time period you want to

view.
c. The selected time period is highlighted and the begin and end dates are displayed next to the

Custom zoom level.
d. Release the mouse button and the graph is redrawn for just the time period selected.

3. Reset the graph to the default by selecting the Live zoom level.

Downloading the graph as animage or .csv file

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 39

Managing agents | 40

You can download the graph either as an image or represented as a set of comma-separated values that can
be opened in spreadsheet programs. The download options are accessed from the down arrow in the top
right corner of the time series graph:

n To download the graph as an image, click the down arrow and select Download Chart. The graph is
downloaded in a file in .png format.

n To download the graph as a set of comma-separated values, click the down arrow and select Export to
CSV.

The graph is downloaded in a file in .csv format.

Viewing an alert on the graph
The graph shown on the Agent Details page might not show the time period or resource associated with a
specific alert. Use this procedure to change the graph to show the alert and the associated metric.

Procedure

1. From the alerts panel on the Agent Details page, select an alert and click Navigate.

The graph is changed to display the time period containing the alert. However, the alert might be for a
metric that is being monitored but that is not being shown in the graph.

The graph displays alerts for all metrics being monitored. However, the graph can show graphed data for a
maximum of eight metrics at a time. The metrics that are being shown on the graph are listed at the
bottom of the graph.

2. To adjust the graph display to show the metrics for the alert, do the following:
a. Locate the alert on the graph and click the alert triangle flag. The Alert Details dialog box is

displayed.

b. Click View on Graph.

3. If the graph is showing eight metrics and the metric you want to display is the ninth metric, you must
choose an existing metric to clear so that the graph can show the metric associated with the alert.

For example:

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 41

Managing agents | 42

a. Clear the selection box for the metrics you no longer want to show.

For example:

b. Click View on Graph.

The graph is changed to show the metric associated with the alert.

For example:

4. You can reset the graph to the default by selecting the Live zoom level.

Enabling a disabled agent using the Web UI
Prerequisites
You must be logged in to the AOS-CX Web UI with administrator rights.

Procedure

1. Select Analytics from the navigation pane.
2. In the Analytics Dashboard, in the Agents panel, click Agents.
3. The Agent Management page is displayed. To enable a disabled agent, select the agent row (not the

link) for an agent that is disabled and click Enable.

4. In the confirmation dialog box, do the following:
a. Optionally, select Save running config to startup.

If you do not save the running configuration to the startup configuration, the change is not
preserved when the switch is rebooted.

b. To enable the agent, click Confirm. To cancel, click Cancel.

Disabling an agent using the Web UI
Prerequisites

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 43

Managing agents | 44

You must be logged in to the AOS-CX Web UI with administrator rights.

Procedure

1. Select Analytics from the navigation pane.
2. In the Analytics Dashboard, in the Agents panel, click Agents.
3. The Agent Management page is displayed. To disable an agent, select the agent row (not the link) in

the list and click Disable.

4. In the dialog box, click Confirm to disable the agent or Cancel. Optionally, check the box to Save
the running config to startup. If you do not select Save the running config to startup, the
change is not preserved when the switch is rebooted.

Deleting an agent using the Web UI
Prerequisites
You must be logged in to the AOS-CX Web UI with administrator rights.

Procedure

1. Select Analytics from the navigation pane.
2. In the Analytics Dashboard, in the Agents panel, click Agents.
3. The Agent Management page is displayed. To delete an agent, select the agent row (not the link) in

the list and click Delete.

4. In the dialog box, click Confirm to delete the agent or Cancel. Optionally, check the box to Save the
running config to startup. If you do not select Save the running config to startup, the change
is not preserved when the switch is rebooted.

Creating an agent from an existing script using the Web UI
Prerequisites
You must be logged in to the AOS-CX Web UI with administrator rights.

Procedure

1. Select Analytics from the navigation pane.
2. In the Analytics Dashboard, in the Agents panel, click Agents.
3. The Agent Management page is displayed. To create an agent, click + Create.

You can also create an agent from the Scripts Management page by selecting a script row and clicking
+ Create Agent. Access the Scripts Management page from the Analytics Dashboard by selecting the
Scripts link in the Scripts panel.

4. In the Create Agent dialog box, enter the agent information.
a. To see a list of scripts available on the switch, click the down arrow next to the Script field.
b. Select a script for the agent to run.
c. Enter a name for the agent.
d. Based on the script you selected, a list of parameters is displayed without values in theValue

column. Enter the values for the parameters.

TheMore Info column displays additional information about the parameter, such as the default
value.

If theMore Info column includes the lock icon, the value of the parameter is encrypted. The
characters you enter are masked on the screen with bullet characters.

If you do not enter a value and there is a default value defined, the default value is used.

If theValue column labels the parameter as Required and that parameter does not include a
default value, you must supply a value before you can create the agent.

e. Optionally, check the box to Save running config to startup.

If you do not save the running configuration to the startup configuration, the change is not
preserved when the switch is rebooted.

f. To create an agent running the specified script with the parameter values entered, click Create.
To cancel the operation, click Cancel.

Changing the configuration of an agent using the Web UI
Prerequisites

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 45

Managing agents | 46

You must be logged in to the AOS-CX Web UI with administrator rights.

Procedure

1. Select Analytics from the navigation pane.
2. In the Analytics Dashboard, in the Agents panel, click Agents.
3. The Agent Management page is displayed. To edit an agent, select the agent row (not the link) in the

list and click Edit.
4. In the Edit dialog box, change parameter values you want to change.

Only integer values (threshold or rate) can be changed.

You can also disable or enable the agent by clicking the Enabled slider.
5. Optionally, select Save running config to startup.

If you do not save the running configuration to the startup configuration, the change is not
preserved when the switch is rebooted.

6. To save your changes, click Save. To cancel, click Cancel.

Getting information about agents using the REST API
Instructions and examples in this document use an IP address that is reserved for documentation,
192.0.2.5, as an example of the IP address for the switch. To access your switch, you must use the IP
address or hostname of that switch.

Prerequisites
You must be logged in to the switch REST API.

Procedure

n To get detailed information about a specific agent, use the GET method on the URI of the agent.

This example gets information about the agent named com.myco.bgp_mon.Agent1:
GET https://192.0.2.5/rest/v1/system/nae_scripts/com.myco.bgp_mon/nae_

agents/com.myco.bgp_mon.Agent1

The following response is an example of an agent that has an error:

{

"name": "com.myco.bgp_mon.Agent1",

"disabled":false,

"parameters_values":{

"threshold":"10"

}

"status": {

"error_at": "1490134092",

"error_description": "The URI is invalid or not supported",

"executed_at": "1490134092",

}

n To get a list of the agents of a specific script, use the GET method on the URI of the nae_agents collection
of the script.

This example gets a list of the agents of the script com.myco.bgp_mon:
GET https://192.0.2.5/rest/v1/system/nae_scripts/com.myco.bgp_mon/nae_agents

The following is an example of a response for a script, port_admin_state_monitor, that has multiple
agents:

[

"/rest/v1/system/nae_scripts/port_admin_state_monitor/nae_agents/port-1_1_1",

"/rest/v1/system/nae_scripts/port_admin_state_monitor/nae_agents/port-1_1_2"

]

n To get detailed information about all the agents on the switch, use the GET method and use wildcards for
the script name and agent name:

For example:

GET https://192.0.2.5/rest/v1/system/nae_scripts/*/nae_agents/*

Creating an agent from an existing script using the REST
API
Instructions and examples in this document use an IP address that is reserved for documentation,
192.0.2.5, as an example of the IP address for the switch. To access your switch, you must use the IP
address or hostname of that switch.

Prerequisites

n You must be logged in to the switch REST API with a user name that has administrator rights.
n The switch REST API access mode must be read-write.
n The script you will use to create the agent must be in a VALIDATED state.

Procedure

1. Use the POST method on the URI of the nae_agents collection of the script. In the request body,
provide the required information in JSON format.

This example creates an agent with the following characteristics:
n The name of the agent is: com.myco.bgp_mon.Agent1
n The name of the script is: com.myco.bgp_mon
n The agent is created in a disabled state ("disabled":true).
n The threshold parameter of the script is set to the value 10.

POST https://192.0.2.5/rest/v1/system/nae_scripts/com.myco.bgp_mon/nae_agents

{

"name": "com.myco.bgp_mon.Agent1",

"disabled":true,

"parameters_values":{

"threshold":"10"

}

}

n Agents must have a unique name. If an agent that has the same name exists, the request fails with
response code 400 and the message:
NAE agent <agent_name> exists already

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 47

Managing agents | 48

n If you supply a parameter value that is not the expected type for that parameter, the request fails
with response code 400 and the message:
Value type mismatch for the parameter <parameter_name>

n If the JSON request body does not include a parameter, but the script defines a default value for
that parameter, the default value is used.

If the JSON request body does not include a parameter that is required by the script, and the
script does not define a default for that parameter, the agent is created, but the agent has the
following error message:
The NAE Agent has Python errors. Please check hpe-policyd logs for Python errors.

Enabling an agent using the REST API
Instructions and examples in this document use an IP address that is reserved for documentation,
192.0.2.5, as an example of the IP address for the switch. To access your switch, you must use the IP
address or hostname of that switch.

Prerequisites

n You must be logged in to the switch REST API with a user name that has administrator rights.
n The switch REST API access mode must be read-write.

Procedure

n To enable the agent at the time the agent is created, set the disabled parameter to false when you
create the agent.

For example:

POST https://192.0.2.5/rest/v1/system/nae_scripts/com.myco.bgp_mon/nae_agents

{

"name": "com.myco.bgp_mon.Agent1",

"disabled":false,

"parameters_values":{

"threshold":"10"

}

}

n To enable an existing agent, use the PUT method to set the disabled parameter to false.

For example:

PUT https://192.0.2.5/rest/v1/system/nae_scripts/com.myco.bgp_mon/nae_

agents/com.myco.bgp_mon.Agent1

{

"disabled":false,

"parameters_values":{

"threshold":"10"

}

}

Disabling an agent using the REST API

Instructions and examples in this document use an IP address that is reserved for documentation,
192.0.2.5, as an example of the IP address for the switch. To access your switch, you must use the IP
address or hostname of that switch.

Prerequisites

n You must be logged in to the switch REST API with a user name that has administrator rights.
n The switch REST API access mode must be read-write.

Procedure
To disable an agent, use the PUT method to set the disabled parameter to true.

For example:

PUT https://192.0.2.5/rest/v1/system/nae_scripts/com.myco.bgp_mon/nae_

agents/com.myco.bgp_mon.Agent1

{

"disabled":true

}

Changing the configuration of an agent using the REST API
Instructions and examples in this document use an IP address that is reserved for documentation,
192.0.2.5, as an example of the IP address for the switch. To access your switch, you must use the IP
address or hostname of that switch.

Prerequisites

n You must be logged in to the switch REST API with a user name that has administrator rights.
n The switch REST API access mode must be read-write.

Procedure

1. Disable the agent.

For example:

PUT https://192.0.2.5/rest/v1/system/nae_scripts/com.myco.bgp_mon/nae_

agents/com.myco.bgp_mon.Agent1

{

"disabled":true

}

2. Update and enable the agent by using the PUT method on the URI of the agent.

The PUT method replaces the agent specified by the URI. If the agent has multiple parameters in
parameters_values, any parameters that you do not specify in the PUT method are reset to their
default values. If you do not specify a value for a required parameter, and that parameter does not
have a default value, the agent configuration is changed, but the agent has the following error
message:
The NAE Agent has Python errors. Please check hpe-policyd logs for Python errors.

This example changes the value of the short-term high threshold for com.myco.bgp_mon.Agent1 to
22.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 49

Managing agents | 50

PUT https://192.0.2.5/rest/v1/system/nae_scripts/com.myco.bgp_mon/nae_

agents/com.myco.bgp_mon.Agent1

{

"disabled":false,

"parameters_values":{

"short_term_high_threshold":"22"

}

}

Deleting an agent using the REST API
Instructions and examples in this document use an IP address that is reserved for documentation,
192.0.2.5, as an example of the IP address for the switch. To access your switch, you must use the IP
address or hostname of that switch.

Prerequisites

n You must be logged in to the switch REST API with a user name that has administrator rights.
n The switch REST API access mode must be read-write.

Procedure
To delete an agent, use the DELETE method on the URI of the agent.

You are not required to disable the agent before deleting it.

The following example deletes Agent1 of the script: com.myco.bgp_mon.
DELETE https://192.0.2.5/rest/v1/system/nae_scripts/com.myco.bgp_mon/nae_

agents/com.myco.bgp_mon.Agent1

Deleting a script also deletes all agents associated with that script.

Agent status
Agents are either enabled or disabled.

An agent that is enabled can have the following status values:

CRITICAL
The agent has encountered a critical error during execution. For information about the error, see the
Analytics Dashboard of the Web UI.

MAJOR
The agent has encountered a major error during execution. For information about the error, see the
Analytics Dashboard of the Web UI.

MINOR
The agent has encountered a minor error during execution. For information about the error, see the
Analytics Dashboard of the Web UI.

NORMAL
Indicates that the agent is actively monitoring network conditions and handling events.

Behaviors when multiple agents monitor the same
resource
A time series is a sequence of data points taken in successive equally spaced points in time.

A time series is associated with the monitored resource attribute, not the agent:

n Only one time series is created for that resource URI (including the attribute), regardless of how many
agents are monitoring the same resource.

n The time series remains in the time series database as long as there is at least one agent monitoring that
URI. The entire time series in the time series database is deleted only when all the agents monitoring that
URI are deleted.

If the agents have different conditions or threshold values, actions (such as alert generation) are taken for
each condition met, but the time series being used is the same for all agents. As a result, an agent might
evaluate conditions at the time it is enabled based on data that existed prior to that time, such as if the
condition aggregates data over time.

For example, consider the following scenario:

1. You create two agents, both of which are disabled:
n Agent A1 monitors CPU utilization.
n Agent A2 monitors CPU utilization and has an action to create an alert when the average over the

last 1 minute of CPU utilization is greater than 90%.

2. You enable agent A1, which starts monitoring CPU utilization.
3. The CPU utilization is above 90% for 5 minutes.
4. You enable agent A2.
5. Agent A2 creates an alert immediately—instead of after one minute—because the time series already

shows that the average of the previous minute of CPU utilization is greater than 90%.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 51

Chapter 7
Troubleshooting agent and script issues

Troubleshooting agent and script issues

Showing the current and maximum number of agents,
monitors, and scripts
Procedure

n To use the CLI, enter the show capacities-status nae command. For example:

switch# show capacities-status nae

System Capacities Status: Filter NAE

Capacities Status Name Value Maximum

--

Number of configured NAE agents currently active in the system 1 25

Number of configured NAE monitors currently active in the system 7 50

Number of configured NAE scripts currently active in the system 1 12

For detailed information about the show capacities-status command, see the Command-Line Interface
Guide.
n To use the Web UI, on the Overview page, look at theAnalytics panel to see the total number of scripts,

agents, and monitors compared to the total number supported on the switch.

For example, Agents: 6/50 indicates that there are total of six enabled and disabled agents out of a
maximum of 50 agents supported on this switch.

n To use the REST API, do the following:
1. To get information about maximum number of scripts, agents, and monitors, send a GET request

to the /system resource, specifying the attributes=capacities query parameter. For example:

GET /rest/v1/system/?attributes=capacities

The response body contains capacity information about multiple switch features. The information
about the Network Analytics Engine starts with the string: nae_

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 52

Troubleshooting agent and script issues | 53

For example:

{

"capacities": {

...

...

"nae_agents": 50,

"nae_monitors": 150,

"nae_notification_handlers": 8,

"nae_notification_queue_size": 25000,

"nae_notifications_rate": 25000,

"nae_notifications_rate_per_monoitor": 500,

"nae_scripts": 25,

"nae_tsdb_disk_quota": 9,

...

...

}

}

{

"capacities": {

...

...

"nae_agents": 50,

"nae_monitors": 150,

"nae_notification_handlers": 8,

"nae_notification_queue_size": 25000,

"nae_notifications_rate": 25000,

"nae_notifications_rate_per_monoitor": 500,

"nae_scripts": 25,

"nae_tsdb_disk_quota": 9,

...

...

}

}

2. To get information about the current number of scripts, agents, and monitors, send a GET request
to the /system resource, specifying the attributes=capacities_status query parameter. For
example:

GET /rest/v1/system/?attributes=capacities_status

The response body contains information about multiple switch features. The information about
the Aruba Network Analytics Engine starts with the string: nae_

For example:

{

"capacities_status": {

...

...

"nae_agents": 6,

"nae_monitors": 27,

"nae_scripts": 7,

...

...

}

}

High switch CPU and memory usage are affecting switch
performance
Symptom
A switch that has Network Analytics Engine (NAE) agents installed is experiencing high CPU usage, high
memory usage, or both, and overall performance is affected.

Cause
The NAE is attempting to monitor too many switch resources. For example, a script uses wildcard characters
in a URI to monitor all interfaces, ACLs, or VLANs, and the switch has hundreds or thousands of those items.

Action

1. Verify that the resources associated with the NAE are consuming the memory and CPU resources by
entering the following commands in the switch CLI:
n show system resource-utilization daemon hpe-tsdbd

n show system resource-utilization daemon hpe-policyd

n show system resource-utilization daemon prometheus

The response to the show system resource-utilization daemon <daemon> command shows the
CPU and memory usage the specified daemon.

2. Identify installed scripts that include the wildcard character (*) in the URIs of monitors.

For example, the following scripts written by Aruba contain wildcard characters to specify resources that
can exist in large numbers on a switch:

n tx_rx_stats_monitor

n fault_finder

In the Web UI, the Script Details page shows the contents of the script.

Look for monitor URIs that specify the wildcard character for resources that your switch has in large
numbers. For example:

n interfaces/*

n acls/*

n vlans/*

3. Delete agents associated with the scripts you identified.

Disabling the agent is not sufficient because the switch does not delete time series data when an
agent is disabled.

Downloading NAE support files
You can download support information specific to the Aruba Network Analytics Engine (NAE) as a file in
tar.gz format using TFTP, SFTP, or USB.

Procedure
From the CLI, use the copy support-files command and specify the NAE feature.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 54

Troubleshooting agent and script issues | 55

Example of copying NAE support files to a remote server using TFTP:

switch# copy support-files feature nae tftp://10.100.0.12/file.tar.gz vrf mgmt

Example of copying NAE support files to a remote server using SFTP:

switch# copy support-files feature nae sftp://root@10.0.14.206/file.tar.gz vrf mgmt

Example of copying the NAE support files to a storage drive connected to the USB port of the switch:

switch# copy support-files feature nae usb:/file.tar.gz

For detailed information about the copy support-files command, see the Command-Line Interface Guide.

NAE support file content
The Aruba Network Analytics Engine (NAE) support files include the following information:

n Configuration information about all the NAE agents and scripts
n All NAE scripts in the same format as when they are returned by the show running-config command
n The nae_alert.journal file, which contains the NAE alerts
n If your support specialist has executed commands to collect memory and CPU profile information before

the copy support-files command is executed, the following information is included:
o The memory and CPU profiles of the hpe-policyd daemon
o The memory and CPU profiles of the hpe-tsdbd daemon

Error: "Switch time and browser time are not in sync"
Symptom
The Web UI displays a yellow caution triangle in the top banner and an error dialog box with the following
title:
Switch time and browser time are not in sync

The content of the dialog box indicates how many seconds the switch time is ahead of or behind the
browser time, and states that the information displayed in the Web UI might not be accurate.

In addition, time series graphs on the Analytics page might be missing expected data, might have data
shown with inaccurate times, or might display incorrect data.

Cause
The switch and the client from which you are viewing the UI are not set to the same time. For example:

n The switch has been rebooted and the time has not been set correctly. For example, the switch could not
reach its configured NTP server.

n Instead of using Coordinated Universal Time (UTC) with a time zone offset or getting the time from an
NTP server, either the switch or the client is manually set to a different time.

Action

n Try clearing or resetting the web client browser cache.
n Ensure that the web client from which you are viewing the Web UI is set to a time zone based on UTC.

For example, if your workstation is set to Eastern Standard Time (EST), and you want to use Pacific Standard
Time (PST), change the time by setting the time zone instead of by manually resetting the time.
n Ensure that the switch is set to use NTP or to a time zone based on UTC time.

o NTP synchronizes the time of day among a set of distributed time servers and clients to correlate
events when receiving system logs and other time-specific events from multiple network devices. All
NTP communications use Coordinated Universal Time (UTC). To show the NTP status, use the show

ntp status command.
o For information about configuring the switch to use NTP, see the Fundamentals Guide.

After you configure the switch, clear the NAE data by entering the clear nae-data command from the
manager context.

For example:

switch# clear nae-data

n If the switch is set to use NTP and there has been a significant clock change, clear the NAE data by using
the clear nae-data command.

For example:

switch# clear nae-data

Analytics time series graph displays message instead of
data: "Agent data not found, please verify..."
Symptom
The time series graph of a monitor displays the following message instead of graphed data:
Agent data not found, please verify that the agent has not be deleted

Cause
The switch operating system software was updated to a different software release, and the name of the
agent after the update is not an exact match to the name of the agent before the update.

For example:

n Before the software update, there was an Analytics time series graph for an agent with the following
name:

system_resource_monitor.1.1.default

n The same script for the new software has the name system_resource_monitor instead of the name
system_resource_monitor.1.1.

n After the software update:
o The name of the new agent is based on the new script name. The new agent name is the following:

system_resource_monitor.default

o The Web UI continues to display the Analytics graph of the older agent, system_resource_
monitor.1.1.default, which has no data and displays the error message.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 56

Troubleshooting agent and script issues | 57

Action

1. Close the panel that is displaying the error message.
2. If there is no Analytics time series graph displayed with the new agent name, add the panel by clicking

the + plus sign next to the agent in the Agents panel.

Inaccurate or no data displayed in analytics time series
graph
Symptom
The time series graph of a monitor is missing expected data, has data shown with inaccurate times, or
incorrect data.

For example, a chart that graphs when a port goes down shows a port as up when it is down, does not show
any state for the port, or shows the event as happening at a time that does not match the actual event--
such as in future.

Solution 1

Cause
The switch and the client from which you are viewing the UI are not set to the same time. For example,
instead of using Coordinated Universal Time (UTC) with a time zone offset or getting the time from an NTP
server, either the switch or the client is manually set to a different time.

Action

n Try clearing or resetting the web client browser cache.
n Ensure that the web client from which you are viewing Web UI is set to a time zone based on UTC. For

example, if your workstation is set to Eastern Standard Time (EST), and you want to use Pacific Standard
Time (PST), change the time by setting the time zone instead of by manually resetting the time.

n Ensure that the switch is set to use NTP or to a time zone based on UTC time.
o NTP synchronizes the time of day among a set of distributed time servers and clients to correlate

events when receiving system logs and other time-specific events from multiple network devices. All
NTP communications use Coordinated Universal Time (UTC).

To show the NTP status, use the show ntp status command.
o For information about configuring the switch to use NTP, see the Fundamentals Guide.

After you configure the switch, clear the NAE data by entering the clear nae-data command from the
manager context.

For example:

switch# clear nae-data

n If the switch is set to use NTP and there has been a significant clock change, clear the NAE data by using
the clear nae-data command.

For example:

switch# clear nae-data

Solution 2

Cause
The switch operating system software was updated to a different software release.

Action

1. Clear the NAE data by entering the clear nae-data command from the manager context.

For example:

switch# clear nae-data

2. Examine the alerts for agent or script errors.

Ensure that the scripts loaded on the switch support the software release installed on the switch.
3. If a script does not support the current software release, delete the script and upload the

replacement script.
4. After you upload replacement scripts, clear the NAE data again by entering the clear nae-data

command from the manager context.

URI errors
Agents can encounter errors not related to script syntax. For example:

n The agent attempts to monitor a port that exists on the switch but is not up.
n The agent attempts to monitor a port that does not exist on this switch.
n The agent attempts to monitor a LAG that has not been configured.
n The specified attribute is not correct for the resource. For example, the query string of the resource URI

specifies nx_packets instead of rx_packets.

LAGs and ports are examples of switch resources. Every switch resource is identified by a URI (Universal
Resource Identifier), so the kinds of errors listed previously are a category of errors called URI errors.

Error: "The NAE Agent is not created...DB constraint
violation errors"
Symptom
When you attempt to create an agent, the agent appears in theAgents panel with a red triangle error
symbol and status of Unknown. The error message is the following:
The NAE Agent is not created. Please check hpe-policd logs for DB constraint violation

errors.

Cause
Attempting to create the agent resulted in creating more monitors than the NAE supports on the switch.

Action

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 58

Troubleshooting agent and script issues | 59

1. Delete the agent that has the error.
2. To view the maximum number of monitors supported on the switch, see theAnalytics panel on the

Overview page of the Web UI.

In the following example, theAnalytics panel does not display an agent error because the agent was
not created. However, theAnalytics panel does show that the number of monitors exceeds the
maximum number of 150.

3. Reduce the number of monitors by identifying and deleting other agents.

Disabling an agent is not sufficient. The switch does not reduce the count of monitors used when
agents are disabled.

4. Create the agents you want to use.

Error: "The NAE Agent has Python errors."
Symptom
An agent has the following error:
The NAE Agent has Python errors. Please check hpe-policyd logs for Python errors.

Solution 1
Cause
When the agent was created, the user supplied an invalid value for a required parameter.

Action
Change the configuration of the agent to include a valid value for the parameter.

Solution 2
Cause
The agent has an error that was not caused by an invalid required parameter.

For example, the value provided for an optional parameter might have caused a processing error.

Action
Examine the log files for the hpe-policyd daemon to identify which Python errors occurred, and take
corrective action.

Error: "Timeseries data cannot be generated...The URI is
invalid or not configured"
Symptom
An agent is in an error state and is not collecting data for one of its monitored resources.

The Agent Error message is the following:

Timeseries data cannot be generated due to

the following agent error: The URI is invalid or not

configured. Either please upload a new script with a

valid URI, or configure the resource, disable the

instance, and enable again: <uri>

In the message, <uri> is the resource that is invalid or not configured. For example:
/rest/v1/system/bridge/vlans/*/macs?count

Solution 1
Cause
If the resource URI is supported on this switch and operating system version, the most likely reason for the
error is that the switch resource—such as a port—is not in an UP state.

Action

1. Resolve the problem that is causing the resource to be unavailable.

For example, if a port is administratively down, bring the port to an UP state.
2. Disable the agent.
3. Enable the agent.

Solution 2
Cause
The agent uses a resource ID from a user-supplied parameter, and the user supplied a resource ID that is
invalid (such as a port that does not exist).

Action

1. Delete the agent.
2. Create and enable an agent that specifies a valid resource ID (such as port number).

Solution 3
Cause
The resource URI is not a user-supplied parameter, and is not supported on this switch and software
version.

For example, a URI that includes /bridge in the path is not valid on 10.03 and later versions.

Action

n If the script was downloaded from the Aruba Solutions Exchange (ASE), replace or update the script with
a script that supports the software version running on the switch.

1. If the script was loaded on a switch running version 10.03 or later and the script name matches
the new script name, you can use the update process to replace the script.

2. If the script was loaded while the switch was running a version earlier than 10.03, you must delete
the existing script, upload the new script, and create new agents.

n If the script not a script downloaded from the ASE, do the following:
1. Delete all agents associated with the script.

Consider recording information about the agent names and parameter values so that you can
create equivalent agents from the modified script.

2. Modify the script to specify only URIs that are valid for this switch and operating system version.
3. Replace the script on the switch with the modified script.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 60

Troubleshooting agent and script issues | 61

4. Create agents from the modified script.
5. Enable the new agents.

Error: "The script syntax is invalid"
Symptom
Script validation fails with the error: The script syntax is invalid

Cause
During the validation process, a syntax error was detected in the script Python code.

Action

1. Modify the script to correct the syntax errors.
2. Replace the script on the switch with the modified script.

Error: "The script agent syntax is invalid"
Symptom
Agent creation fails with the error: The script agent syntax is invalid

Cause
In the agent creation request, one the following occurred:

n The creation request specified a script name that does not match any script installed on the switch.
n A parameter value was used that does not match the syntax or type of the parameter defined by the

script.

Action
Modify the agent creation request.

Error: "Sandbox timed out while running script"
Symptom
An agent is in an error state and is not collecting data. In the Web UI, theAgent Details page displays the
error:
Sandbox timed out while running script

Solution 1
Cause
The switch is operating under a heavy load.

Action

1. If the agent is not already disabled, disable the agent.
2. When the operating load for the switch returns to normal, enable the agent.

Solution 2

Cause
The script that has many monitors and functions or executes loops that take a long time.

Action

1. Modify the script to correct the design issues, such as replacing a larger script with several smaller
scripts.
a. Delete all agents associated with the script. Consider recording information about the agent

names and parameter values so that you can create equivalent agents from the modified script.
b. Modify the script.
c. Replace the script on the switch with the modified script.
d. Create agents from the modified script.
e. Enable the new agents.

Error: "The agent instantiated sandbox has timed out"
Symptom
An agent is in an error state and is not collecting data. In the Web UI, theAgent Details page displays the
error:
The agent instantiated sandbox has timed out

Solution 1
Cause
The switch is operating under a heavy load.

Action

1. If the agent is not already disabled, disable the agent.
2. When the operating load for the switch returns to normal, enable the agent.

Solution 2
Cause
The script has many monitors and functions or executes loops that take a long time.

Action

1. Modify the script to correct the design issues, such as replacing a larger script with several smaller
scripts.
a. Delete all agents associated with the script.

Consider recording information about the agent names and parameter values so that you can
create equivalent agents from the modified script.

b. Modify the script.
c. Replace the script on the switch with the modified script.
d. Create agents from the modified script.
e. Enable the new agents.

Error: "Unable to parse condition expression..."
Symptom

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 62

Troubleshooting agent and script issues | 63

Time-series data for the monitored resource is being collected, but no alerts are triggered for the condition.
In the Web UI, theAgent Details page displays the following error:
Unable to parse condition expression, invalid condition syntax <condition>

<condition> is the condition expression that has the error.

For example:
Unable to parse condition expression, invalid condition syntax: rate

/rest/v1/system/interfaces/*?attributes=link_resets per and 10 seconds > 1

In addition, the switch event logs might contain errors related to the rule that contains the condition. You
can enter the show event -d hpe-policyd command to display events related to the Aruba Network
Analytics Engine scripts.

For example:

switch# show event -d hpe-policyd

2018-0one-09:09:21:49.906768|hpe-policyd|5504|LOG_ERR|AMM|-|Error executing NAE

action CLI belonging to condition system_resource_monitor.1.0.default.condition_7

and agent system_resource_monitor.default due to Command failed: non-zero

exit status.

Cause
The cause is one of the following:

n There is a syntax error in the condition expression.

Condition expressions can include operators, functions, and keywords—all of which must be in the required
sequence. For example:

o Correct syntax: r.condition('{} > {}', [value,threshold])

o Incorrect syntax: r.condition('> {} {}', [value,threshold])

n There is a mismatch between the number of parameters passed to the condition expression and the
number of parameters expected.

For example, the following expression expects two inputs but is only passed one input:
r.condition('{} > {}', [value])

When the inputs to a function are a string and an array, the Python interpreter does not detect mismatches
in parameters and values. For example, according to the Python interpreter, the expression r.condition

('>', []) could be valid, so it does not return a syntax error during script validation. However when the
script is run, the expression has no meaning because the comparator has no values to compare, so the
"Unable to parse condition expression..." error is returned.

Action

1. Modify the script to correct the condition expression:
a. Delete all agents associated with the script.

Consider recording information about the agent names and parameter values so that you can
create equivalent agents from the modified script.

b. Modify the script.
c. Replace the script on the switch with the modified script.
d. Create agents from the modified script.
e. Enable the new agents.

Error: "The CLI command is invalid"

Symptom
An agent is in an error state and is not successfully executing a CLI command specified in the script. The
script has the following error:
The CLI command is invalid

Cause
A script action specifies a CLI command that is not valid on this switch and software version.

Action

1. Determine which CLI command is invalid. To see which command failed, in the Web UI, you can view
theAction Result section of theAlert Details screen of the alert that generated this error.

You can search for the following error in the event log:
NAE Action CLI command <command> is not supported

<command> is the name of the unsupported command.

For example:
NAE Action CLI command datetime is not supported

2. Modify the script to change the CLI command or remove the script action that contains the
command.
a. Delete all agents associated with the script.

Consider recording information about the agent names and parameter values so that you can
create equivalent agents from the modified script.

b. Modify the script.
c. Replace the script on the switch with the modified script.
d. Create agents from the modified script.
e. Enable the new agents.

Error: "Command failed: non-zero exit status"
Symptom
An agent is in an error state and is not successfully executing a CLI command specified in the script, and the
following conditions are true:

n The agent has the following error:
Command failed: non-zero exit status

n In theAction Result Output dialog box, the output of the CLI command is the following:
Cannot execute command. Command not allowed.

n The switch is configured to use a remote authentication and authorization service, such as TACACS+.

Cause
Network Analytics Engine (NAE) scripts execute CLI commands as the admin user, and do not attempt to
authenticate before executing the CLI command. The remote authentication and authorization service is
not allowing the admin user to execute commands without prior authentication.

Action
Configure the remote authentication and authorization service to allow authorization without
authentication for the admin user.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 64

Troubleshooting agent and script issues | 65

Error: "The action is invalid"
Symptom
An agent is in an error state and is not successfully executing an action specified in the script. The script has
the following error:
The action is invalid

Cause
A script action specifies an action that is not a CLI command and is not valid on this switch and software
version.

Action

1. Determine which script action is invalid.

To see which command or action failed, in the Web UI, view theAction Result section of theAlert
Details screen of the alert that generated this error.

2. Modify the script to change or remove the script action that contains the command.
a. Delete all agents associated with the script.

Consider recording information about the agent names and parameter values so that you can
create equivalent agents from the modified script.

b. Modify the script.
c. Upload the modified script.
d. Create agents from the modified script.
e. Enable the new agents.

ActionShell output error: "not available in enhanced
secure mode"
Symptom
In the Web UI, an alert has an Alert Details dialog box that shows an ActionShell command that has a
result of ERROR. TheAction Result Output dialog box for that command includes the following error:
not available in enhanced secure mode

The script and the agent are not in an error state.

Cause
The switch is configured in enhanced secure mode.

Action
Do one of the following:

n Ignore the error. The enhanced secure mode of the switch denies access to shell commands by design.
n Change the configuration of the switch from enhanced secure mode to standard mode. For more

information about enhanced secure mode, see the Security Guide.

Chapter 8
Using the Aruba Solutions Exchange

(ASE)

Using the Aruba Solutions Exchange (ASE)

Finding NAE scripts on the ASE website
No login is required to browse the website or view information about a script. To download a script or to
view the source code from the website, you must be logged in. Alternatively, you can download scripts from
the Web UI without logging in to the ASE.

Prerequisites
You must have access to the Aruba Solutions Exchange (ASE) website at:

https://ase.arubanetworks.com/

Procedure

1. On the top toolbar, select SOLUTIONS.
2. In the navigation pane, under PRODUCTS, select NAE.
3. To filter the list by additional criteria, select one or more tags under TAGS. For example:

n To view Aruba certified NAE solutions, select the tag: nae-aruba-certified
n To view solutions that are related to ports, select the tag: port
n To view solutions that apply to your switch series, select the tag that contains the product number,

for example: 8400x

Filtering on multiple tags is treated as an OR operation. Solutions are displayed if they have any one
of the selected tags.

Finding NAE scripts on the ASE using the Web UI
Prerequisites
You must be logged in to the AOS-CX Web UI.

Procedure

1. Select Analytics from the navigation pane.

2. In the Analytics Dashboard, in the Scripts panel, click the ASE download button to view and
download scripts from the Aruba Solution Exchange (ASE). From the Web UI, only Aruba-certified
scripts are listed. For other scripts, go to the ASE directly.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 66

https://ase.arubanetworks.com/

Using the Aruba Solutions Exchange (ASE) | 67

You can also access the Aruba Solution Exchange from the Script Management page where you select

the button.
3. The Aruba Solution Exchange page is displayed, listing the available scripts. You can select a script and

click View Script to see the programmatic script contents.

Viewing recent changes to existing NAE solutions
No login is required to browse the website or view information about a script. To download a script or to
view the source code from the website, you must be logged in. Alternatively, you can download scripts from
the Web UI without logging in to the ASE.

Prerequisites
You must have access to the Aruba Solutions Exchange (ASE) website at:

https://ase.arubanetworks.com/

Procedure

1. Select the solution.
2. On the solution details page, view the recent changes in theRecent Changes box. You can view

additional change information by clickingMore Details.

Downloading or installing a script from the ASE using the
Web UI
This procedure downloads an NAE script from the ASE to the specified location.

https://ase.arubanetworks.com/

Prerequisites
You must be logged in to the AOS-CX Web UI. Administrator rights are required to install a script, but not
required to download a script to your local system.

Procedure

1. Select Analytics from the navigation pane.

2. In theAnalytics Dashboard, in the Scripts panel, click the ASE download button to view and
download scripts from the Aruba Solution Exchange (ASE). You can also access the Aruba Solution

Exchange from the Script Management page where you select the button.
3. The Aruba Solution Exchange page is displayed, listing the available scripts.

4. Select an installed script you want to download and click Download. If the script has not yet been
installed, see the next step to install it.

You are prompted to either open the file or save the file to the location you select.

Saving will overwrite any existing file in the specified location with the same name.

Click OK or Cancel.
5. If the script has not yet been installed on the switch, you can select Install instead of Download.

In the message dialog box, click Confirm to install the script or Cancel.

Downloading a solution from the ASE website to your
workstation
Use this procedure when you want to download a solution to your workstation from the ASE website before
you upload the script to a switch. Alternatively you can download a script directly to your switch from the
Web UI.

Prerequisites
You must be logged in to the Aruba Solutions Exchange (ASE).

Procedure

1. On the ASE, search or browse for the solution you want to use.
2. In theDETAILS column, click the title of the solution.

The detailed information about the solution is displayed.
3. Verify that the displayed solution is the solution you want to download.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 68

Using the Aruba Solutions Exchange (ASE) | 69

TheDescription shows information about the solution, including software required and platforms
supported.

4. Click Finish.
5. In the dialog box, select CONFIG.
6. Do one of the following:

n To download the solution, click Download.
n To receive the solution as an email attachment, click Email Me.

The email is sent to the email address associated with the account you used to log in to the ASE.

n To send the solution to as an attachment to an email address other than the email address
associated with the account you used to log in to the ASE, enter the email address in the Email
address text box and click Forward.

7. Click Close.

Chapter 9
NAE scripts repository on GitHub

NAE scripts repository on GitHub
Aruba publishes Aruba Network Analytics Engine scripts and examples to the following GitHub repository:

https://github.com/aruba/nae-scripts

You can use this repository like any other GitHub repository:

n You can fork and clone the repository into your own account profile.
n You can explore the scripts (in the agents folder) and examples and use them to create your own

customized scripts.
n You can use the pull-request process to propose any additions or changes to the scripts.

The scripts and examples are organized by feature or protocol and then by supported platform. For more
information about the structure and use of this repository, see the README.md file in the repository.

For more information about using GitHub, see:

https://help.github.com/

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 70

https://github.com/aruba/nae-scripts
https://help.github.com/

Chapter 10
Scripts and security

Scripts and security
Aruba-certified scripts have been written and tested by Aruba. However, it is a good practice to examine all
scripts before you upload them to understand what actions agents created from them will take on your
switch.

It is also a good practice to save a switch checkpoint before you create and enable an agent for first time so
that you can recover the switch configuration if an agent performs an undesirable action.

Reading the description of the script in the ASE or readme file on the GitHub repository can give you a good
idea about what the script is intended to do, but to know what actions a script will take requires examining
the Python code. Look for text phrases such as the following (the lack of closing parentheses in the search
string is intentional):

n action("CLI"

n ActionCLI

n action("SHELL"

n ActionShell

n requests.

Action CLI functions that execute a switch CLI command. The command is provided as an argument to that
function. Commands that include the text config or configure can be an indicator that the function is
changing the configuration of the switch.

Action SHELL functions execute a command in the underlying operating system of the switch. The command
is provided as an argument to that function.

Functions that begin with the text requests. can be REST API requests that use the requests library to make
POST, PUT, or DELETE messages to the switch or to other network locations.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 71

Chapter 11
Scripts

Scripts

Python version and library support
Python version
The Aruba Network Analytics Engine supports scripts written in Python 3.5.X.

Python modules available
In addition to the standard Python libraries, the following Python modules are provided with the Aruba
Network Analytics Engine:

python3-misc
Usage example:
import os

For more information, see:

https://docs.python.org/3.5/library/os.html#miscellaneous-system-information

python3-pkgutil
Usage example:
from pkgutil import extend_path

...

__path__ = extend_path(__path__, __name__)

...

For more information, see:

https://docs.python.org/3.5/library/pkgutil.html

python3-importlib
Usage example:
import importlib

For more information, see:

https://docs.python.org/3.5/library/importlib.html

python3-datetime
Usage example:
import datetime

For more information, see:

https://docs.python.org/3.5/library/datetime.html

python3-enum
Usage example:

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 72

https://docs.python.org/3.5/library/os.html#miscellaneous-system-information
https://docs.python.org/3.5/library/pkgutil.html
https://docs.python.org/3.5/library/importlib.html
https://docs.python.org/3.5/library/datetime.html

Scripts | 73

from enum import Enum

...

class Color(Enum):

... red = 1

... green = 2

... blue = 3

...

For more information, see:

https://docs.python.org/3.5/library/enum.html

python3-compression
Usage examples:
import zlib

import gzip

import bz2

import lzma

import zipfile

import tarfile

For more information, see:

https://docs.python.org/3.5/library/archiving.html

python3-numbers
Usage example:
import numbers

For more information, see:

https://docs.python.org/3.5/library/numbers.html

python3-selectors
Usage example:
import selectors

For more information, see:

https://docs.python.org/3.5/library/selectors.html

python3-signal
Usage example:
import signal

...

Set the signal handler and a 5-second alarm

signal.signal(signal.SIGALRM, handler)

signal.alarm(5)

...

For more information, see:

https://docs.python.org/3.5/library/signal.html

tar
Usage example:
import tarfile

...

tar = tarfile.open("sample.tar.gz")

tar.extractall()

tar.close()

...

For more information, see:

https://docs.python.org/3.5/library/enum.html
https://docs.python.org/3.5/library/archiving.html
https://docs.python.org/3.5/library/numbers.html
https://docs.python.org/3.5/library/selectors.html
https://docs.python.org/3.5/library/signal.html

https://docs.python.org/3/library/tarfile.html

Third-party Python libraries available
The following third-party Python libraries are provided with the Aruba Network Analytics Engine framework.
To use the library in a script, import the library.

requests
The requests library is an HTTP library for Python.

Usage example:
import requests

...

r = requests.get('https://api.github.com/events')

r.json()

...

In a Python NAE script, when you specify the URI of a local switch resource, do not specify the external IP
address or host name. Instead, use the HTTP_ADDRESS global constant.

For example, instead of the following:
LOCAL_SYSTEM = '127.0.0.1:5577'

uri = 'http://' + LOCAL_SYSTEM + '/rest/v1/system/ports/1%2F1%2F5?attributes=link_state'

Specify the following:
uri = HTTP_ADDRESS + '/rest/v1/system/ports/1%2F1%2F5?attributes=link_state'

For more information about the requests library, see:

http://docs.python-requests.org/en/master/

jsondiff
The jsondiff library is an MIT-licensed Python library used for comparing and patching JSON and JSON-like
structures in Python.

Usage example:
import jsondiff

...

diff({'a': 1, 'b': 2}, {'b': 3, 'c': 4})

For more information, see:

https://github.com/ZoomerAnalytics/jsondiff

REST API version support
Network Analytics Engine (NAE) scripts can monitor REST v1 resources only.

Rules for script files
n Format: If you upload script using the REST API, you must convert the file to base64-encoding. If you

upload the script using the Web UI, the conversion is done automatically.
n For information about coding style, naming conventions, and other best practices, see the style guide for

Python code (PEP 8).

Script example
Script file port_admin_state_monitor.1.0.py

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 74

https://docs.python.org/3/library/tarfile.html
http://docs.python-requests.org/en/master/
https://github.com/ZoomerAnalytics/jsondiff
https://www.python.org/dev/peps/pep-0008/

Scripts | 75

#-*- coding: utf-8 -*-

#

#Copyright (c) 2017 Hewlett Packard Enterprise Development LP

#

#Licensed under the Apache License, Version 2.0 (the "License");

#you may not use this file except in compliance with the License.

#You may obtain a copy of the License at

#

#http://www.apache.org/licenses/LICENSE-2.0

#

#Unless required by applicable law or agreed to in writing,

#software distributed under the License is distributed on an

#"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

#KIND, either express or implied. See the License for the

#specific language governing permissions and limitations

#under the License.

Manifest = {

'Name': 'port_admin_state_monitor',

'Description': 'Port Admin Status Monitoring Agent',

'Version': '1.0',

'Author': 'Aruba Networks'

}

ParameterDefinitions = {

'port_id': {

'Name': 'Port Id',

'Description': 'Port to be monitored',

'Type': 'string',

'Default': '1/1/1'

}

}

class Policy(NAE):

def __init__(self):

#Port status

uri1 = '/rest/v1/system/ports/{}?attributes=admin'

self.m1 = Monitor(

uri1,

'Port admin status',

[self.params['port_id']])

self.r1 = Rule('Port disabled administratively')

self.r1.condition('transition {} from "up" to "down"', [self.m1])

self.r1.action(self.action_port_down)

#Reset policy status when port is up

self.r2 = Rule('Port enabled administratively')

self.r2.condition('transition {} from "down" to "up"', [self.m1])

self.r2.action(self.action_port_up)

def action_port_down(self, event):

ActionSyslog(

'Port {} is disabled administratively',

[self.params['port_id']])

ActionCLI("show lldp configuration {}", [self.params['port_id']])

ActionCLI("show interface {} extended", [self.params['port_id']])

if self.get_alert_level() != AlertLevel.CRITICAL:

self.set_alert_level(AlertLevel.CRITICAL)

self.logger.debug("### Critical Callback executed")

def action_port_up(self, event):

self.logger.info("Current alert level: " + str(self.get_alert_level()))

if self.get_alert_level() is not None:

ActionSyslog(

'Port {} is enabled administratively',

[self.params['port_id']])

self.remove_alert_level()

self.logger.debug('Unset the previous status')

self.logger.debug('### Normal Callback executed')

Script in base64 encoded format
Iy0qLSBjb2Rpbmc6IHV0Zi04IC0qLQ0KIw0KI0NvcHlyaWdodCAoYykgMjAxNyBIZXdsZXR0IFBhY2thcmQgRW50ZXJw

cmlzZSBEZXZlbG9wbWVudCBMUA0KIw0KI0xpY2Vuc2VkIHVuZGVyIHRoZSBBcGFjaGUgTGljZW5zZSwgVmVyc2lvbiAy

LjAgKHRoZSAiTGljZW5zZSIpOw0KI3lvdSBtYXkgbm90IHVzZSB0aGlzIGZpbGUgZXhjZXB0IGluIGNvbXBsaWFuY2Ug

d2l0aCB0aGUgTGljZW5zZS4NCiNZb3UgbWF5IG9idGFpbiBhIGNvcHkgb2YgdGhlIExpY2Vuc2UgYXQNCiMNCiNodHRw

Oi8vd3d3LmFwYWNoZS5vcmcvbGljZW5zZXMvTElDRU5TRS0yLjANCiMNCiNVbmxlc3MgcmVxdWlyZWQgYnkgYXBwbGlj

YWJsZSBsYXcgb3IgYWdyZWVkIHRvIGluIHdyaXRpbmcsDQojc29mdHdhcmUgZGlzdHJpYnV0ZWQgdW5kZXIgdGhlIExp

Y2Vuc2UgaXMgZGlzdHJpYnV0ZWQgb24gYW4NCiMiQVMgSVMiIEJBU0lTLCBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09O

RElUSU9OUyBPRiBBTlkNCiNLSU5ELCBlaXRoZXIgZXhwcmVzcyBvciBpbXBsaWVkLiBTZWUgdGhlIExpY2Vuc2UgZm9y

IHRoZQ0KI3NwZWNpZmljIGxhbmd1YWdlIGdvdmVybmluZyBwZXJtaXNzaW9ucyBhbmQgbGltaXRhdGlvbnMNCiN1bmRl

ciB0aGUgTGljZW5zZS4NCg0KTWFuaWZlc3QgPSB7DQogICAgJ05hbWUnOiAncG9ydF9hZG1pbl9zdGF0ZV9tb25pdG9y

JywNCiAgICAnRGVzY3JpcHRpb24nOiAnUG9ydCBBZG1pbiBTdGF0dXMgTW9uaXRvcmluZyBBZ2VudCcsDQogICAgJ1Zl

cnNpb24nOiAnMS4wJywNCiAgICAnQXV0aG9yJzogJ0FydWJhIE5ldHdvcmtzJw0KfQ0KDQpQYXJhbWV0ZXJEZWZpbml0

aW9ucyA9IHsNCiAgICAncG9ydF9pZCc6IHsNCiAgICAgICAgJ05hbWUnOiAnUG9ydCBJZCcsDQogICAgICAgICdEZXNj

cmlwdGlvbic6ICdQb3J0IHRvIGJlIG1vbml0b3JlZCcsDQogICAgICAgICdUeXBlJzogJ3N0cmluZycsDQogICAgICAg

ICdEZWZhdWx0JzogJzEvMS8xJw0KICAgIH0NCn0NCg0KY2xhc3MgUG9saWN5KE5BRSk6DQoNCiAgICBkZWYgX19pbml0

X18oc2VsZik6DQoNCiNQb3J0IHN0YXR1cw0KICAgICAgICB1cmkxID0gJy9yZXN0L3YxL3N5c3RlbS9wb3J0cy97fT9h

dHRyaWJ1dGVzPWFkbWluJw0KICAgICAgICBzZWxmLm0xID0gTW9uaXRvcigNCiAgICAgICAgICAgIHVyaTEsDQogICAg

ICAgICAgICAnUG9ydCBhZG1pbiBzdGF0dXMnLA0KICAgICAgICAgICAgW3NlbGYucGFyYW1zWydwb3J0X2lkJ11dKQ0K

ICAgICAgICBzZWxmLnIxID0gUnVsZSgnUG9ydCBkaXNhYmxlZCBhZG1pbmlzdHJhdGl2ZWx5JykNCiAgICAgICAgc2Vs

Zi5yMS5jb25kaXRpb24oJ3RyYW5zaXRpb24ge30gZnJvbSAidXAiIHRvICJkb3duIicsIFtzZWxmLm0xXSkNCiAgICAg

ICAgc2VsZi5yMS5hY3Rpb24oc2VsZi5hY3Rpb25fcG9ydF9kb3duKQ0KDQojUmVzZXQgcG9saWN5IHN0YXR1cyB3aGVu

IHBvcnQgaXMgdXANCiAgICAgICAgc2VsZi5yMiA9IFJ1bGUoJ1BvcnQgZW5hYmxlZCBhZG1pbmlzdHJhdGl2ZWx5JykN

CiAgICAgICAgc2VsZi5yMi5jb25kaXRpb24oJ3RyYW5zaXRpb24ge30gZnJvbSAiZG93biIgdG8gInVwIicsIFtzZWxm

Lm0xXSkNCiAgICAgICAgc2VsZi5yMi5hY3Rpb24oc2VsZi5hY3Rpb25fcG9ydF91cCkNCg0KICAgIGRlZiBhY3Rpb25f

cG9ydF9kb3duKHNlbGYsIGV2ZW50KToNCiAgICAgICAgQWN0aW9uU3lzbG9nKA0KICAgICAgICAgICAgJ1BvcnQge30g

aXMgZGlzYWJsZWQgYWRtaW5pc3RyYXRpdmVseScsDQogICAgICAgICAgICBbc2VsZi5wYXJhbXNbJ3BvcnRfaWQnXV0p

DQogICAgICAgIEFjdGlvbkNMSSgic2hvdyBsbGRwIGNvbmZpZ3VyYXRpb24ge30iLCBbc2VsZi5wYXJhbXNbJ3BvcnRf

aWQnXV0pDQogICAgICAgIEFjdGlvbkNMSSgic2hvdyBpbnRlcmZhY2Uge30gZXh0ZW5kZWQiLCBbc2VsZi5wYXJhbXNb

J3BvcnRfaWQnXV0pDQogICAgICAgIGlmIHNlbGYuZ2V0X2FsZXJ0X2xldmVsKCkgIT0gQWxlcnRMZXZlbC5DUklUSUNB

TDoNCiAgICAgICAgICAgIHNlbGYuc2V0X2FsZXJ0X2xldmVsKEFsZXJ0TGV2ZWwuQ1JJVElDQUwpDQogICAgICAgIHNl

bGYubG9nZ2VyLmRlYnVnKCIjIyMgQ3JpdGljYWwgQ2FsbGJhY2sgZXhlY3V0ZWQiKQ0KDQogICAgZGVmIGFjdGlvbl9w

b3J0X3VwKHNlbGYsIGV2ZW50KToNCiAgICAgICAgc2VsZi5sb2dnZXIuaW5mbygiQ3VycmVudCBhbGVydCBsZXZlbDog

IiArIHN0cihzZWxmLmdldF9hbGVydF9sZXZlbCgpKSkNCiAgICAgICAgaWYgc2VsZi5nZXRfYWxlcnRfbGV2ZWwoKSBp

cyBub3QgTm9uZToNCiAgICAgICAgICAgIEFjdGlvblN5c2xvZygNCiAgICAgICAgICAgICAgICAnUG9ydCB7fSBpcyBl

bmFibGVkIGFkbWluaXN0cmF0aXZlbHknLA0KICAgICAgICAgICAgICAgIFtzZWxmLnBhcmFtc1sncG9ydF9pZCddXSkN

CiAgICAgICAgICAgIHNlbGYucmVtb3ZlX2FsZXJ0X2xldmVsKCkNCiAgICAgICAgICAgIHNlbGYubG9nZ2VyLmRlYnVn

KCdVbnNldCB0aGUgcHJldmlvdXMgc3RhdHVzJykNCg0KICAgICAgICBzZWxmLmxvZ2dlci5kZWJ1ZygnIyMjIE5vcm1h

bCBDYWxsYmFjayBleGVjdXRlZCcp

Parts of a script
An Aruba Network Analytics Engine script is a Python script that defines which switch resources to monitor
and, optionally, rules that define what actions to take when certain conditions are true.

The main structures of a script are the following:

n Header
n Import statements
n Manifest
n Parameter definitions

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 76

Scripts | 77

n Agent class constructor, which can contain the following:

Agent functions
The agent constructor can contain functions that are restricted to a specific monitor, rule, or action.
Examples of agent functions include the following:

o The Graph, Title, and Baseline functions.
o Functions related to agent events, such as on_agent_restart and on_parameter_change.
o Functions related to Aruba Analytics Data Collections (ADCs).

Monitors
A monitor uses the REST URI of a resource to define the resource on the switch to be monitored by the
agent.

o All monitors generate time-series data about resource they monitor. The data can be viewed in time-
series graphs in the Web UI.

o Optionally, a monitor can be associated with rules that execute actions when certain network conditions
are true.

Rules
Rules define under which conditions to execute actions.

o Rules are optional.
o A rule can be defined with conditions that reference multiple monitors.
o A rule must contain a condition.
o A rule is not required to contain actions. A rule that does not contain actions does not generate an alert

when an active condition transitions to true.

Conditions
The condition of a rule defines the circumstance under which actions, if any, are executed. The clear
condition is an optional part of the rule that determines when a network condition or event is no longer
occurring.

Actions
Actions are the tasks done by the agent in response to defined conditions. Actions can automate many
of the things an administrator might do to troubleshoot network issues. Actions are part of a rule.
Actions are optional.

Header
The script header includes legal, copyright, and license information.

The following is an example of a script header for an Aruba-certified script:
#-*- coding: utf-8 -*-

#

#Copyright (C) 2017 Hewlett Packard Enterprise Development LP

#

#Licensed under the Apache License, Version 2.0 (the "License");

#you may not use this file except in compliance with the License.

#You may obtain a copy of the License at

#

#http://www.apache.org/licenses/LICENSE-2.0

#

#Unless required by applicable law or agreed to in writing,

#software distributed under the License is distributed on an

#"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

#KIND, either express or implied. See the License for the

#specific language governing permissions and limitations

#under the License.

Import statements
The import statements specify the Python modules that define functions used elsewhere in the script. If
you are using several functions from the same module, consider importing the whole module.

The following example imports the Enum functions from the enum library and imports the datetime module.
from enum import Enum

import datetime

Manifest
The manifest introduces the script to the Python compiler. The manifest is required.

Example of a manifest:
Manifest = {

'Name': 'com.arubanetworks.cpu_monitor_threshold',

'Description': 'System CPU Monitoring Policy on configured threshold values',

'Version': '0.1',

'Author': 'Aruba Networks'

'APIVersion': '1.0.0',

'TargetPlatform': '8400',

'TargetSoftwareVersion': '10.03'

'Tags': ['application']

}

Required items
Name

Specifies a unique name for the script. The name must be a text string that starts with a letter or number
and can contain alphanumeric characters and the special characters . (dot), - (hyphen), and _

(underscore). The maximum length of the plus the version must not exceed 80 characters.
Hewlett Packard Enterprise recommends that the name be a canonical name (CNAME). The canonical
name follows the reverse domain name notation. For example: com.myco.bgp_mon1.0

Description
Describes what the script monitors. Must be a text string.

Version
Specifies version information about the script. The version is appended to the script name. The version
must be a text string that starts with a letter or number and can contain alphanumeric characters and the
special characters . (dot), - (hyphen), and _ (underscore). The maximum length of the name plus the
version must not exceed 80 characters. Version must not be empty.

Author
Specifies the author of the script. Must be a text string.

Optional items
APIVersion

Specifies which NAE script API version is required to run this script. This item is informational only. No
validation or action is performed for this item.
Default: 1.0.0

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 78

Scripts | 79

TargetPlatform
Specifies the switch platform on which the script is designed to be executed. If this item is not specified,
the script is considered to be platform independent. This item is informational only. No validation or
action is performed for this item.
Example: 8325

TargetSoftwareVersion
Specifies the switch firmware version or versions on which the script is designed to be executed. If
TargetPlatform is not specified, the script is expected to work with any software version. This item is
informational only. No validation or action is performed for this item.
Example: 10.03

Tags
Specifies one or more tags to provide information about the script.
The following tags are used by NetEdit to categorize and group the script and related alerts, and to
automatically incorporate new NAE scripts into the health ranking for each of the following categories:

n application

n segmentation

n service (includes Client Services)
n routing

n bridging

n device

n other

Each tag must be a text string. This item is informational only. No validation or action by the NAE is
performed for this item.
Examples:

n 'Tags': ['application']

n 'Tags': ['segmentation','vlan']

The manifest tags are not shown in the Web UI or the CLI, and they are not the same as the script tags in
the ASE. To view the tags associated with a script installed on a switch, you can do one of the following:

n Look at the Manifest in the script by viewing the script contents on the Script Details page of the Web
UI.

n Use the REST API to get information about the script.

Parameter definitions
The ParameterDefinitions statement defines the parameters that are used in the script.

When a user creates an agent, the user can specify values for the parameters. The user must specify values
for parameters that the script identifies as required parameters.

When you write a script, Hewlett Packard Enterprise recommends that you create parameters for any user-
configurable option in the script.

If the script has no parameters, omit the ParameterDefinitions statement.

The following example of a ParameterDefinitions statement defines the following parameters:
threshold

The threshold parameter is an integer and has a default value 90.

password

The password parameter is a string. The parameter is optional. If the user supplies a value, the user-
supplied text is encrypted when the text is stored.

ParameterDefinitions = {

'threshold': {

'Name': 'Critical CPU Threshold value in percentage',

'Description': ('When System CPU utilization exceeds this value, '

'set the policy status to Critical and the policy will log '

'system daemon CPU utilization details and CPU queue

statistics in syslog.'),

'Type': 'integer',

'Default': 90

}

'password': {

'Name': 'Password',

'Description': ' Service Password',

'Type': 'string',

'Encrypted': True,

'Required': False

}

}

ParameterDefinitions description

Structure and syntax
The ParameterDefinitions is a Python dictionary that contains one or more parameters. Each parameter is
defined by a Python dictionary containing information specific to the parameter. At the time the agent is
created, the default value is assigned to the parameter unless the user specifies a different value.

This part of the script is omitted if the script does not include user-defined parameters.
ParameterDefinitions = {

'<param_name>': {

'Name': '<descriptive_parameter_name>',

'Description': '<description>'

'Type': '<datatype>',

'Default': <default_value>,

'Encrypted': '<True_or_False>'

'Required': '<True_or_False>'

}

}

Components
Each parameter definition must contain the following:

The parameter declaration
Specifies a unique name for parameter. This name must be unique within the script. The name is a text
string that can contain alphanumeric characters, - (hyphen), and _ (underscore). Example: threshold

Name
The name of the parameter. This name is displayed in the user interfaces.

Description
Describes the parameter. This description is displayed to users in theCreate Agent screen of the Web
UI.

Type
Specifies the datatype of parameter. Parameter type is one of the following values:

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 80

Scripts | 81

n integer

n string

Default
Specifies the default value of the parameter. At the time the agent is created, the default value is
assigned to the parameter unless the user specifies a different value. You must specify a default if the
parameter is part of a monitor or a condition. Otherwise, providing a default value is optional.

Encrypted
Specifies whether the user-supplied text is to be encrypted when the text is stored.
When Encrypted is True, the parameter is stored in a secure way. The parameter value will be available in
plain text only when the Network Analytics Engine script is executed.
Default: False

Required
Specifies whether the user is required to supply a value. Use this attribute to force the user to provide a
value for this parameter.
When Required is True, the parameter is required. If the user does not provide a value for this
parameter, an error is returned and the agent is not created.
When Required is False, the parameter is optional. If the user does not provide a value for this
parameter, the default value of the parameter is used.
Default: False

Agent class constructor
Syntax
The agent class constructor must begin with the following declaration:
class Agent(NAE):

def __init__(self):

The name of the constructor, Agent, is recommended, but using a different name does not result in an
error.

Description
The main body of the script is the agent class constructor. The agent class constructor can contain:

n Monitors
n Conditions
n Rules
n Actions
n Agent functions such as Graph, on_parameter_change, and Baseline.
n Analytics Data Collections (ADCs)

Example
Example of an agent class constructor:
class Agent(NAE):

def __init__(self):

uri1 = '/rest/v1/system/subsystems/*/*/power_supplies/*?attributes=status'

self.m1 = Monitor(uri1, name='System CPU utilization')

self.r1 = Rule('High CPU utilization')

self.r1.condition('{} > {}', [self.m1, self.params['threshold']])

self.r1.action(self.action_high_cpu)

self.r1.action("CLI","top cpu")

self.r1.action("SHELL","ps -ef")

def action_high_cpu(self, event):

self.set_alert_level(AlertLevel.CRITICAL)

CPU value when the Condition met

cpu = event["value"]

ActionSyslog("CPU Utilization at %s%." % cpu)

ActionCLI("top cpu")

ActionShell("ps -ef")

Graph

Syntax
Graph(<monitor-set>[, title=<title>][, dashboard_display=True])

Description
The Graph function enables you to select a monitor or group of monitors to display together in a graph on
the Agent Details page in the Web UI.

Parameters
<monitor-set>

Specifies a comma-separated list of monitors to be included in this graph. The list must be enclosed in
brackets ([]), which define a list in Python. The list must include at least one monitor.
Examples:

n [self.monitor1]

n [self.m1, self.m2, self.m3]

<title>

Specifies the title to be displayed for this graph. The definition of <title> must use the Title function.
For example: title=Title("My graph title")

dashboard_display=True

Specifies that this graph represent this agent on the Analytics Dashboard of the Web UI. You must
specify this parameter for exactly one graph per agent.
If either of the following is true, a script error is generated:

n The script has multiple Graph functions defined, but none of those Graph functions set the parameter
dashboard_display=True.

n The script has multiple Graph functions defined, and more than one of those Graph functions sets the
parameter dashboard_display=True.

Usage
The Aruba Network Analytics Engine (NAE) provides the Graph function to enable you to select a monitor or
group of monitors to display together in a graph on the Agent Details page in the Web UI.

The Agent Details page can include up to nine graphs. If the script does not include a Graph function, a
default graph is created automatically. The default graph includes all the monitors in the script. You use the
dashboard_display=True parameter to specify which graph is to represent the agent in on the Analytics
Dashboard of the Web UI.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 82

Scripts | 83

The graph displays alerts for all metrics being monitored. However, the graph can show graphed data for a
maximum of eight metrics at a time. The metrics that are being shown on the graph are listed at the bottom
of the graph.

When the agent is created, the NAE selects the most appropriate metrics to graph, up to a maximum of
eight. After the agent is created, a Web UI user can customize the graph and choose which metrics to
display.

Examples
In the following example, graph g1 includes data from monitors m1 and m2. The graph does not have a
custom title and is not the graph that represents the agent in the Analytics Dashboard.
self.g1 = Graph([self.m1, self.m2])

In the following example, graph g2 includes data from monitor m1. The graph has a custom title, but it is not
the graph that represents the agent in the Analytics Dashboard.
title = Title("CPU utilisation by {} daemon ", [self.params["daemon_name"]])

self.g2 = Graph([self.m1], title=title)

In the following example, graph g2 includes data from monitor m1. The graph has a custom title and it is the
graph that represents the agent in the Analytics Dashboard.
title = Title("CPU utilisation by hpe-policyd daemon")

self.g2 = Graph([self.m1], title=title, dashboard_display=True)

Title

Syntax
Title("<title-string>"[, <params>])

Description
Creates a text string to be used as a custom title for a graph or for a predefined action.

Parameters
<title-string>

Specifies the python string to be used for the title. The string can contain parameters. To specify that a
parameter is expected, use the following characters:
{}
For example: "Print interface {} details"

<params>

Optional. Contains the parameters to be used in the title string. If multiple parameters are used, they
must be passed to the function in the order they are required by the title string.

Usage
The Aruba Network Analytics Engine provides the Title function to enable you to specify custom titles
when defining multiple graphs, or to show specific information about an action being performed by an
agent. For example, if you define a title for each CLI action in a script, a user can see which action is being
performed by looking at the Alert Details page in the Web UI.

Examples
The following example defines a title that is used for a graph. The title string includes a parameter.
title = Title("CPU utilisation by {} daemon ", [self.params["daemon_name"]])

self.g1 = Graph([self.m1], title=title)

The following example defines a title that is used for a CLI action. The title string does not include a
parameter.

title = Title("Show switch configuration")

self.r.action("CLI","show running-config ", title=title)

on_agent_re_enable

Syntax
on_agent_re_enable(<agent>, <event>)

Description
Performs the specified actions when the NAE agent is re-enabled.

Parameters
<agent>

Specifies the agent that has the changed parameters.
Typically, this parameter is defined as the variable: self

<event>

Specifies a Python dictionary that contains the event information.
Typically, this parameter is defined as the variable: event

Usage
When an agent is disabled, it does not perform monitoring tasks. When an agent is re-enabled, it might not
be in the correct state to perform its monitoring tasks. The Aruba Network Analytics Engine provides the on_

agent_re_enable function to enable you to specify actions to perform to update an agent after it is re-
enabled.

Example
def on_agent_re_enable(self, event):

self.remove_alert_level()

ActionCustomReport("Agent re-enabled")

on_agent_restart

Syntax
on_agent_restart(<agent>, <event>)

Description
Performs the specified actions when the NAE agent is restarted.

Parameters
<agent>

Specifies the agent that has the changed parameters.
Typically, this parameter is defined as the variable: self

<event>

Specifies a Python dictionary that contains the event information.
Typically, this parameter is defined as the variable: event

Usage
The NAE daemon might be stopped and restarted because of a management module failover operation or
because a core dump operation has been performed.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 84

Scripts | 85

When the NAE daemon restarts, it restarts the agents. When an agent is restarted, it might not be in the
correct state to perform its monitoring tasks. The Aruba Network Analytics Engine provides the on_agent_

restart function to enable you to specify actions to perform to update an agent after it is restarted.

Example
def on_agent_restart(self, event):

ActionCLI("show core-dumps")

self.remove_alert_level()

on_parameter_change

Syntax
on_parameter_change(<agent>, <params>)

Description
Performs the specified actions when a user changes the value of an agent parameter.

Parameters
<agent>

Specifies the agent that has the changed parameters.
Typically, this parameter is defined as the variable: self

<params>

Specifies a Python dictionary that contains the name of the changed parameter, the old value, and the
new value.

Usage
Parameters that are defined in the ParameterDefinitions of a script can be changed by a user after the
user creates the agent.

The Aruba Network Analytics Engine provides the on_parameter_change function to enable you to specify
actions the agent is to perform when the user changes the value of one or more parameters.

Example
ParameterDefinitions = {

'interface_id': {

'Name': 'Interface Id',

'Description': 'Interface to be monitored',

'Type': 'string',

'Default': '1/1/1'

}

}

uri1 = '/rest/v1/system/interfaces/{}?attributes=link_state'

self.m1 = Monitor(uri1, 'Interface Link State')

def on_parameter_change(self, params):

interface_id = params['interface_id']

if interface_id["old"] != interface_id["new"]:

self.remove_alert_level()

Baselines for dynamic thresholds for monitors
Many agents monitor things like network traffic, which can vary throughout the day.

Monitors usually contain rules to generate an alert—and possibly execute other actions—when something
like the rate of incoming packets exceeds a certain value. This value is commonly referred to as a threshold.

It is difficult for a script writer to choose a threshold value that is appropriate for all switches in all networks.
For example:

n The rate of incoming traffic for one switch might be relatively high, even under normal circumstances.
n On a different switch on a different network, that same incoming traffic rate might be considered

abnormally high, and the network admin would want an alert to be generated in those circumstances.
n If the script writer chooses a threshold based on the lower incoming traffic rate, the agent monitoring the

high-traffic switch will either generate numerous alerts or will remain in an alert state for most of the
time. Because the threshold is lower than a traffic rate that is considered normal for that switch, the
alerts generated because of the lower thresholds are considered "false positives" by the network
administrator.

The Baseline function provides a way to specify thresholds that are appropriate to the network conditions
on the switch. When an agent is created and enabled, it spends a specified amount of time "learning" about
the data it is monitoring before it sets thresholds that are calculated based on what it learned.

In addition, these thresholds are dynamic. The agent continues to learn about the data it monitors and the
Baseline function adjusts the thresholds accordingly. For example, if the lower-traffic switch starts to get
consistently higher incoming traffic rates, the Baseline function adjusts the thresholds to reflect the newly
learned rates.

If desired, the script writer can specify default thresholds that can be used to determine when to set and
clear alerts while the agent in a learning state. Otherwise the agent does not generate alerts while it learning
about the data.

The methods used to determine the baseline from which to calculate the thresholds—both during the initial
learning state and over time—depend on the algorithm selected in the Baseline function.

Baseline workflow and considerations
The following diagram shows a summary of the workflow of a Baseline function that uses MaxAlgorithm in
its threshold calculations:

Choosing threshold multipliers

The high threshold is used in the determination of the condition which, when true, triggers the generation of
an alert and, optionally, the execution of additional actions.

The low threshold is used in the rule to determine the clear condition, which—when true—triggers actions
such as resetting the alert level.

At the end of the initial learning period and at the end of the continuous learning window, the MaxAlgorithm

function calculates a single baseline value based on the smoothed data. In the Baseline function, you
specify a high-threshold multiplier and a low-threshold multiplier to apply to this baseline value, resulting in
the high threshold and the low threshold, against which datapoints are evaluated.

In effect, this strategy creates a "corridor" in which data can fluctuate without triggering alerts.

n If you choose a low number for the high-threshold multiplier, smaller variations from the baseline trigger
alerts, which can result in alerts being triggered for what might be normal fluctuations in data.

n If you choose a high number for the high-threshold multiplier, the threshold might be exceeded less
often, resulting in fewer alerts.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 86

Scripts | 87

Effect of learning periods

Both the continuous learning window and the initial learning period are part of the look-back mechanism
used by the Baseline function. These learning durations are used to determine how many datapoints to
consider when calculating the baseline.

Using a period of time instead of specifying a number of datapoints is useful for situations in which knowing
what a representative number of datapoints might be is difficult, but a representative amount of time is
easier to estimate. However, getting enough data during the learning period to make a good calculation can
depend on the length of the learning period and how typical the network conditions are when the agent is
enabled.

Choosing a longer learning period enables the Baseline algorithms to distinguish important trends while
ignoring temporary large fluctuations in data. Choose a learning period that is significantly longer than a
situation that you would consider to be temporary for that kind of data.

For example:

n If the agent is enabled at a time when network traffic is low and the initial learning period is 10 minutes,
the thresholds that are calculated are based on that low traffic. When more users arrive two hours later
and network traffic increases, the measured traffic quickly exceeds the threshold.

n However, if you choose a learning period of one day, the "normal" fluctuations in traffic throughout the
day are included in the baseline, resulting in thresholds that are appropriate to the situation.

Anomalies and baseline recalculations

Data that exceeds the high threshold is considered an anomaly.

If an anomaly occurred during the continuous learning window, all data points that occurred during the
continuous learning window are ignored and thresholds are not recalculated. This design prevents the
thresholds from being reset as a result of a temporary "spike" in data.

If no anomalies occurred during the continuous learning window, the Baseline function updates the
thresholds based on the latest result provided by the MaxAlgorithm function.

Example of baselines in a time series graph
The following is an example the time series graph for a monitor that includes baselines:

n The initial learning time is one minute.
n There are no default thresholds.

In this graph:

n The green line is the raw data.
n The orange line is the high threshold as calculated by the baseline.
n The blue line is the low threshold as calculated by the baseline.

The events in the timeline are as follows:

1. At 20:32:30, an agent is created and enabled. The baseline enters the learning state. Because the
script did not specify default thresholds, there are no thresholds defined. In the graph, just the green
line for the raw data is displayed.

2. At 20:33:30, the baseline exits the learning state and enters the active state:
n The high threshold and the low threshold calculations are completed.
n The graph begins the display of the orange line for the high threshold and the blue line for the low

threshold.
n The agent will generate an alert when the monitored traffic rate (in packets per second) exceeds

the high threshold.
n The agent will clear the alert when the monitored traffic rate (in packets per second) drops below

the low threshold.

3. At 20:37:33, an alert is triggered because the monitored traffic rate exceeds the high threshold.
4. At 20:39:15, the alert is cleared because the monitored traffic rate (in packets per second) is lower

than the low threshold.
5. At 20:40:30, the thresholds are updated.

In this case, the thresholds are set significantly higher because the algorithm includes all the data in its
continuous learning window, which included the time in which the traffic rate was much higher than the
previous threshold.

If the script specified a longer initial learning time, such as one day, the calculations used to create the
thresholds can include the typical fluctuations in data that can occur, resulting in more appropriate
thresholds and alerts that trigger only for significant anomalies.

Example of a script that uses baselines
The following is an example of a script that includes multiple monitors and baselines:
Manifest = {

'Name': 'single_interface_tx_rx_stats_monitor',

'Description': 'Policy to monitor tx/rx packets stats of a interface',

'Version': '2.0',

'Author': 'Aruba Networks'

}

ParameterDefinitions = {

'interface_id': {

'Name': 'Interface Id',

'Description': 'Interface to be monitored',

'Type': 'string',

'Default': '1/1/1'

}

}

class Agent(NAE):

def __init__(self):

algorithm for dynamic Threshold calculation

self.alg = MaxAlgorithm(continuous_learning_window="10m")

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 88

Scripts | 89

rx packets

uri1 = '/rest/v1/system/interfaces/{}?attributes=statistics.rx_packets'

rate_m1 = Rate(uri1, "10 seconds", [self.params['interface_id']])

self.m1 = Monitor(

rate_m1,

'Rx Packets (packets per second)')

self.r1 = Rule('Rule for Monitor Interface rx Packets')

title1 = Title("Baseline for Interface rx Packets")

self.baseline1 = Baseline(self.m1, algorithm=self.alg, title=title1,

high_threshold_factor=2,

low_threshold_factor=1.2,

initial_learning_time='1d')

self.r1.condition('{} > {}', [self.m1, self.baseline1])

self.r1.clear_condition('{} < {}', [self.m1, self.baseline1])

self.r1.action("ALERT_LEVEL", AlertLevel.CRITICAL)

self.r1.clear_action("ALERT_LEVEL", AlertLevel.NONE)

rx packets dropped

uri2 = '/rest/v1/system/interfaces/{}?attributes=statistics.rx_dropped'

self.m2 = Monitor(

uri2,

'Rx Packets Dropped (packets)',

[self.params['interface_id']])

tx packets

uri3 = '/rest/v1/system/interfaces/{}?attributes=statistics.tx_packets'

rate_m3 = Rate(uri3, "10 seconds", [self.params['interface_id']])

self.m3 = Monitor(

rate_m3,

'Tx Packets (packets per second)')

self.r3 = Rule('Rule for Monitor Interface tx Packets')

title3 = Title("Baseline for Interface tx Packets")

self.baseline3 = Baseline(self.m3, algorithm=self.alg, title=title3,

high_threshold_factor=2,

low_threshold_factor=1.2,

initial_learning_time='1d')

self.r3.condition('{} > {}', [self.m3, self.baseline3])

self.r3.clear_condition('{} < {}', [self.m3, self.baseline3])

self.r3.action("ALERT_LEVEL", AlertLevel.CRITICAL)

self.r3.clear_action("ALERT_LEVEL", AlertLevel.NONE)

tx packets dropped

uri4 = '/rest/v1/system/interfaces/{}?attributes=statistics.tx_dropped'

self.m4 = Monitor(

uri4,

'Tx Packets Dropped (packets)',

[self.params['interface_id']])

Baseline

Syntax
Baseline(<monitor>

[, title=<title>]

[, algorithm=<algorithm>]

[, high_threshold_factor=<high-multiplier>]

[, low_threshold_factor=<low-multiplier>]

[, initial_learning_time="<duration>"]

[, default_thresholds=(<lthresh>,<hthresh>)]

)

Description
The Baseline function calculates and sets low and high thresholds for a monitor based on data gathered
during a learning period after an agent is enabled or restarted.

The calculated thresholds account for typical fluctuations in the data, enabling alerts to be triggered only for
conditions exceeding the learned "normal" range. The Baseline function also calculates new thresholds and
updates baselines at specified intervals, enabling the monitor to adjust as network conditions change.

Parameters
<monitor>

Specifies the monitor to which the baseline applies.
If the monitored URI contains wildcards, the baseline is calculated against all resources pointed to by
expanding the wildcard. The same baseline thresholds apply to all resources.

<title>

Specifies the title to be displayed for this baseline. If specified, the title is displayed in the Web UI as the
name of the baseline.
The definition of title must use the Title function.
For example: title=Title("Baseline for CPU utilization")

<algorithm>

Specifies the algorithm to use to calculate the baseline thresholds.
The supported and default algorithm is: MaxAlgorithm

<high-multiplier>

Specifies the high-threshold multiplier to apply to the value calculated by the algorithm.
The algorithm result multiplied by the high-multiplier determines the current high threshold for the
monitor.
Typically, the high threshold is used to determine when the rule condition is true and therefore to trigger
an alert and execute actions.
Default: 2

<low-multiplier>

Specifies the low-threshold multiplier to apply to the value calculated by the algorithm.
The algorithm result multiplied by the low-multiplier determines the current low threshold for the
monitor.
Typically, the low threshold is used to determine when the clear condition is true and therefore to
execute clear actions, such as clearing the alert.
Default: 1

<duration>

Specifies amount of time series data required for learning.
The initial learning time is used determine how long to stay in the initial learning state after an agent is
enabled. If there is already a time series in the database for the monitored resource, the Baseline

function compares the amount of data to the initial learning time and includes that data.
For example, if the initial learning time is one hour and one or more hours of time series data exists in the
database, the thresholds are set immediately. If there is 55 minutes of data available, the agent stays in
the initial learning state for five minutes. If there is no data available, the baseline stays in the initial
learning state for one hour.
During the initial learning state, the baseline function looks at the monitored data and uses its algorithm
to determine normal patterns versus anomalies. Unless you specify values for the default_thresholds

parameter, the agent does not generate alerts during the initial learning state.
Ensure that the initial learning time is long enough to gather enough data to determine normal versus
abnormal patterns.
For example:

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 90

Scripts | 91

n If you are monitoring something that is updated infrequently, a longer initial learning time might be
required to obtain enough data.

n If an agent is monitoring network traffic and that agent is enabled during a time that has unusually low
traffic, the baseline calculates a low value, and "normal" traffic levels exceed the threshold, creating an
alert. By setting a longer duration for the initial learning period, you maximize the ability of the algorithm
to make calculations based on typical conditions.

The format for <duration> is <number><unit>, where <unit> is one of the following:

Value Meaning

s seconds

m minutes

h hours

d days

w weeks

Default: 1h
<lthresh> and <hthresh>

Specifies the default low and default high thresholds. These thresholds are used while the baseline is in
the initial learning state. Both thresholds must be specified.
If default thresholds are not specified, alerts are not triggered for the monitor while the baseline is in the
learning state.

Example
The following example contains a monitor that includes a baseline:
algorithm for dynamic Threshold calculation

self.alg = MaxAlgorithm(continuous_learning_window="10m")

rx packets

uri1 = '/rest/v1/system/interfaces/{}?attributes=statistics.rx_packets'

rate_m1 = Rate(uri1, "10 seconds", [self.params['interface_id']])

self.m1 = Monitor(

rate_m1,

'Rx Packets (packets per second)')

self.r1 = Rule('Rule for Monitor Interface rx Packets')

title1 = Title("Baseline for Interface rx Packets")

self.baseline1 = Baseline(self.m1, algorithm=self.alg, title=title1,

high_threshold_factor=2,

low_threshold_factor=1.2,

initial_learning_time='1d')

self.r1.condition('{} > {}', [self.m1, self.baseline1])

self.r1.clear_condition('{} < {}', [self.m1, self.baseline1])

self.r1.action("ALERT_LEVEL", AlertLevel.CRITICAL)

self.r1.clear_action("ALERT_LEVEL", AlertLevel.NONE)

MaxAlgorithm

Syntax
MaxAlgorithm(continuous_learning_window="<duration>")

Description
The MaxAlgorithm function smooths raw data within the initial learning time or the continuous learning
window by calculating an average over time to find the greatest normal data during the past learning
window.

Parameters
continuous-learning-window="<learning-window>"

Specifies how frequently to update baseline calculations when the baseline is in the active state, and how
far to look back at data when recalculating the baseline threshold after an agent is restarted.
If an agent is disabled and then re-enabled, the calculation is based on the initial learning time defined by
the Baseline function instead.
Default: 1h
For example, if the continuous learning window is one hour, and there is 55 minutes of stored data, the
MaxAlgorithm function recalculates the baseline used for thresholds after five minutes.
The format for <learning-window> is <number><unit>, where <unit> is one of the following:

Value Meaning

s seconds

m minutes

h hours

d days

w weeks

Example
algorithm for dynamic Threshold calculation

self.alg = MaxAlgorithm(continuous_learning_window="2h")

How the MaxAlgorithm function works

The MaxAlgorithm function uses smoothed data over time to find the maximum value and calculate a
baseline of "typical" data. By setting a high threshold based on this calculation, the number of false positives
can be reduced. The agent generates alerts for extreme anomalies only.

The MaxAlgorithm function is best for data that has no limit on its maximum value, such as incoming
network traffic.

Smoothing data
The MaxAlgorithm function uses the "simple moving average" algorithm to smooth data.

In general, data smoothing is the process of detecting and removing "noise" data, allowing important
patterns to remain.

In its formula, the simple moving average algorithm reduces the influence of datapoints that are not similar
to the others because it includes multiple datapoints in the calculation. In addition, at each subsequent
measurement point, the new data point is added and the oldest data point is removed, so short-term
anomalies are eventually removed from the calculation.

For example, consider a simple moving average that is calculated based on five datapoints. If incoming
traffic rates—measured in packets per second at regular intervals—are 10, 11, 100, 4 and 5:

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 92

Scripts | 93

n The highest datapoint, 100, is very different from the other datapoints. However the influence of that
datapoint on the result is limited because the formula takes the average of five datapoints. In this case,
the average is 26.

n In addition, over time, the result will be a lower number if the additional datapoints are also lower.

Choosing a continuous learning window
The longer the learning window, the more datapoints that are collected, and the less influence a short-term
fluctuation in data has on the result.

Consider the network traffic example. If the continuous learning window is 10 minutes, the new thresholds
will be calculated based on traffic during that time. If, during that time, network traffic is low, the Baseline

function calculates the new thresholds based on that value. When the traffic increases, the traffic rate
quickly exceeds the threshold and the agent generates an alert. If the network traffic was unusually low
during the learning period, the typical network traffic can result in an undesired alert (false positive).

ADCs
Aruba Analytics Data Collections (ADCs) are script-defined rules to provide statistics about different types of
network traffic passing through a switch. Network traffic statistics can be gathered based on many different
frame or packet characteristics, including—but not limited to—the following:

n Source IP address (IPv4 or IPv6)
n Destination IP address (IPv4 or IPv6)
n Layer 3 (IP) protocol
n Layer 4 application ports
n Physical switch port

You can create ADCs and view ADC information through NAE scripts only. Multiple agents can use the same
ADC.

ADCs are one of two types: IPv4 and IPv6. There can be multiple ADCs of each type.

ADCs are similar to ACLs in the following ways:

n ADCs and ACLs are installed in the switch hardware ASIC and share underlying mechanisms and
limitations, including using TCAM entries.

n ADCs and ACLs are defined in switch configuration database in similar ways.

An ADC is composed of one or more ADC entries ordered and prioritized by sequence numbers. The lowest
sequence number is the highest prioritized ADC entry. The ADC processes a packet sequentially against
entries in the list until either the packet matches an ADC entry or the last ADC entry in the list has been
evaluated.

Notes:

n When the agent instantiated from the script that defines the ADC is disabled or deleted, the NAE deletes
the ADC. Disabling or deleting the agent is the only method to delete the ADC.

n If the switch is configured to create an automatic checkpoint (using the checkpoint auto <time>

command), the NAE does not create the ADC.
n The ADCList class includes methods to add entries and to get entries. After an entry is added, it cannot

be modified or deleted.

The following is an example of a script that defines an ADC list and entries:

Manifest = {

'Name': 'adc_hit_counters_monitor',

'Description': 'Network Analytics Agent Script to monitor'

'ADC hit counters',

'Version': '1.0',

'Author': 'Aruba Networks'

}

ParameterDefinitions = {

'office365_traffic_bound': {

'Name': 'office365_traffic_bound',

'Description': 'Traffic flow to/from Office 365, '

'paramater options: \'to\' or \'from\', default is \'to\'',

'Type': 'String',

'Default': 'to'

}

}

IPv4Addresses contains a large list of IP addresses. For readability,

a small sample of addresses is shown in this example.

IPv4Addresses = ["13.65.240.22/255.255.255.255", "13.66.58.59/255.255.255.255",

"13.70.156.206/255.255.255.255",

"13.71.145.114/255.255.255.255", "13.71.145.122/255.255.255.255",

"13.71.151.88/255.255.255.255",

"191.237.218.239/255.255.255.255",

"207.46.134.255/255.255.255.255",

"207.46.153.155/255.255.255.255"]

class Agent(NAE):

def __init__(self):

if str(self.params['office365_traffic_bound']) == 'to':

self.adc_outgress = ADCList("office365_outgress", ADCList.Type.IPV4,

"Traffic from Office365")

for i in range(0, len(IPv4Addresses)):

entry = ADCEntry(ADCEntry.Type.MATCH).dst_ip(IPv4Addresses[i])

self.adc_outgress.add_entry(i, entry)

ipv4_outgress_traffic = Rate(

"/rest/v1/system/adc_lists/office365_

outgress/ipv4?attributes=statistics.*", "15s")

ipv4_outgress_sum = Sum(ipv4_outgress_traffic)

self.ipv4_outgress_monitor = Monitor(

ipv4_outgress_sum, "Ipv4 Traffic to Office365")

elif str(self.params['office365_traffic_bound']) == 'from':

self.adc_ingress = ADCList("office365_ingress", ADCList.Type.IPV4,

"Traffic to Office365")

for i in range(0, len(IPv4Addresses)):

entry = ADCEntry(ADCEntry.Type.MATCH).src_ip(IPv4Addresses[i])

self.adc_ingress.add_entry(i, entry)

ipv4_ingress_traffic = Rate(

"/rest/v1/system/adc_lists/office365_

ingress/ipv4?attributes=statistics.*", "15s")

ipv4_ingress_sum = Sum(ipv4_ingress_traffic)

self.ipv4_ingress_monitor = Monitor(

ipv4_ingress_sum, "Ipv4 Traffic from Office365")

else:

raise Exception("Invalid Parameters, "

"please create agent with parameter 'to' or 'from',

default: \'to\'")

ADCList class

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 94

Scripts | 95

Syntax
ADCList("<name>", <type>[, "<description>")

Description
Python class for an Analytics Data Collections (ADC) list. Creates and returns the ADC list.

Parameters
<name>

Specifies the name of the list. The format of <name> is a Python text string.
<type>

Specifies the type of ADC.
Valid values are the following:

n ADCList.Type.IPV4

n ADCList.Type.IPV6

<description>

Description of the ADC list. The format of <description> is a Python text string.

Methods
add_entry(<seq>, <adc_entry>)

Adds the ADC entry object <adc_entry> to the ADC list at sequence number <seq>.
The sequence number is a positive integer that is unique within the ADC list. If the sequence number
exists in the ADC list, an agent error is generated. Range: 0 through 4294967295
Example:
self.adc.add_entry(10, entry1)

get_entries()

Returns a Python list of all ADC entries in the ADC list.
Example:
self.adc.get_entries()

Example
self.adc_outgress = ADCList("office365_outgress", ADCList.Type.IPV4, "Traffic from

Office365")

ADCEntry class

Syntax
ADCEntry(<type>)

Description
Python class that represents an entry in an Analytics Data Collections (ADC) list. Creates the ADC entry.

Returns the ADC entry object.

Parameters
<type>

Specifies the action to be taken by the ADC entry.
Valid values are the following:

ADCEntry.Type.MATCH

Update statistics for packets that match this ADC entry.

ADCEntry.Type.IGNORE

Take no action for packets that match this ADC entry.

Methods
src_ip("<IP-ADDR>[/<MASK>]")

Adds the source IP address information to the entry.
Returns the ADC entry object.

<IP-ADDR>

Specifies the IP address.
/<MASK>

Specifies the subnet mask.
Example:
src_ip("10.0.0.1/255.255.255.255")

dst_ip("<IP-ADDR>[/<MASK>]")

Adds the destination IP address information to the entry.
Returns the ADC entry object.

<IP-ADDR>

Specifies the IP address.
/<MASK>

Specifies the subnet mask.
Example:
dst_ip("10.0.0.2/255.255.255.255")

src_port("<PORT>")

Adds the source port information to the entry.
Default: If no source port is specified, traffic ingressing any source port is matched.
Returns the ADC entry object.

<PORT>

Specifies the port number.
Example:
src_port("1/1/2")

src_l4_port(<L4-PORT>)

Adds the layer 4 source port information to the entry.
Returns the ADC entry object.

<L4-PORT>

Specifies the layer 4 port number.
Example:
src_l4_port(6640)

dst_l4_port(<L4-PORT>)

Adds the layer 4 destination port information to the entry.
Returns the ADC entry object.

<L4-PORT>

Specifies the layer 4 port number.
Example:
dst_l4_port(8080)

protocol(<protocol>[, flags={<flags>}])

Adds the network protocol information to the entry, which enables you to match or ignore packets
based on the network protocol used or based on specific protocol flags.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 96

Scripts | 97

Returns the ADC entry object.
<protocol>

Specifies the network protocol.
Use the following value to specify the TCP protocol:
ADCEntry.Protocol.TCP

flags={<flags>}

Sets protocol flags for this ADC entry. Contains a comma-separated list of flag names and values in the
following format:
"<flag-name>": True

If an entry sets multiple flags, the packet matches the entry if all the flag conditions match.
The following flag names are supported for the TCP protocol:

tcp_urg

Urgent.
tcp_ack

Acknowledgment.
tcp_psh

Push buffered data to receiving application.
tcp_rst

Reset the connection.
tcp_syn

Synchronize sequence numbers.
tcp_fin

Finish connection.
tcp_established

Established connection.
Default: No flags are set.

Example:
protocol(ADCEntry.Protocol.TCP, flags={“tcp_ack”: True, “tcp_psh”:

True, “tcp_rst”: True, “tcp_syn”: True, “tcp_fin”: True})

Example
entry1 = ADCEntry(ADCEntry.Type.MATCH).src_ip("10.0.0.1/255.255.255.255").dst_ip
("10.0.0.2/255.255.255.255") .protocol(ADCEntry.Protocol.TCP)

Monitors
In a script, a monitor defines what resource the agent will monitor when the agent is enabled on a switch.

There is no rule that limits how many monitors can be specified in a single script. However the total number
of scripts, agents, and monitors supported depends on the computing capacity of the switch.

A resource is any concept (received packets on a particular interface, user, CPU utilization, and so forth) that
can be addressed and referenced using a URI.

Monitor function
The monitor is defined by the Monitor function, which has the following arguments:

n The item to be monitored—expressed as the REST URI of a system resource. This URI must include a
query string that specifies the attribute or attributes to be monitored.

n If the URI includes a parameter, the name of the parameter.

n The name of the monitor, which is a string that is unique among the monitors defined in that script.

In the example, the name of the monitor is: Interface Received Bytes.

The following is an example of a monitor that uses a parameter for the resource ID. The monitor, named
Interface Received Bytes, records the received bytes of the interface that will be specified by the user
when the agent is created.
self.monitor = Monitor('/rest/v1/system/interfaces/{}?attributes=rx_bytes',

[self.params['iface_id']],name='Interface Received Bytes')

The following is an example of the same monitor except that it does not use a parameter for the resource ID
of the interface. Instead, the resource ID is defined as 1%2f1%2f7, which is the percent-encoded
representation of the switch member/slot/port notation: 1/1/7.
self.monitor = Monitor('/rest/v1/system/interfaces/1%2f1%2f7?attributes=rx_bytes',

name='Interface Received Bytes')

In the previous example:

n The URI path is: /rest/v1/system/interfaces/1%2f1%2f7
n The resource ID portion of the path is: 1%2f1%2f7
n The URI query string is: ?attributes=rx_bytes

To get the URI of a resource to monitor, you can use the AOS-CX REST API Reference browser interface to
access the REST API. For more information about the REST API and the Swagger UI, see the REST API Guide.

When you specify the monitored URI, you can also use variables to represent the URI. This strategy can
simplify updating a script with the REST API version changes or to make code more readable when there are
long URI paths.

For example:
#Received bytes on a user-specified interface

uri1 = '/rest/v1/system/interfaces/{}?attributes=rx_bytes'

self.m1 = Monitor(

uri1,

'Interface Received Bytes',

[self.params['iface_id']])

URIs for monitors
The URI of a monitored resource is composed of several components, including the host name or host IP
address, the path, and the query string that specifies the attribute to monitor.

In a Python NAE script, when you specify the URI of a local switch resource to monitor, omit the server URL
portion of the URI. Specify only the path and query string portion of the URI.

For example:
cpu_uri = '/rest/v1/system/daemons/{}?' \

'attributes=resource_utilization.cpu'

If the switch is a VSX switch, you can specify the peer switch by prepending /vsx-peer to the path portion of
the URI.

For example:
peer_cpu_uri = '/vsx-peer/rest/v1/system/daemons/{}?' \

'attributes=resource_utilization.cpu'

Path component of the URI
The path component of the URI is everything before the question mark (?) character. The path is a
hierarchy. The forward slash (/) character indicates the hierarchical relationship between resources.

Because the forward slash character has special meaning, forward slash characters that are part of the URL
path must be percent-encoded, with the code %2F representing the forward slash.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 98

Scripts | 99

For example, the following URI specifies interface 1/1/5:
/rest/v1/system/interfaces/1%2F1%2F5?attributes=statistics.rx_packets

The path portion of a monitored resource URI can contain the following:

n The wildcard character
n User-defined parameters

Query component of the URI
The query component is sometimes called the query string. In a URI, the question mark (?) character
indicates the beginning of the query component.

The query component of a monitored URI must contain at least one key=value pair. Multiple pairs are
separated by the ampersand (&) character.

The following keys are supported:
attributes

When the key is attributes, value is the name of an attribute. The attribute must be an attribute of the
resource specified by the path component of the URI. Multiple values are supported. Commas separate
the values.
For example:
/rest/v1/system/vlans?depth=1&attributes=id,name,type

When a URI defines a monitor in an Aruba Network Analytics Engine script, attribute values in the query
string support an additional dot notation that the Network Analytics Engine uses to access additional
information. For example:
/rest/v1/system/subsystems/management_module/1%2F5?attributes=resource_utilization.cpu

This dot notation is supported for certain URIs that define monitors in Network Analytics Engine scripts
only.

filter

When the key is filter, value is an attribute-name:attribute-value pair that specifies the name and
value of an attribute. The attribute must be an attribute of the resource specified by the path
component of the URI. Multiple attribute and value pairs are supported. Commas separate the pairs.
For example:
...&filter=type:vlan,admin_state:up

Examples of URIs for monitors
CPU utilization
/rest/v1/system/subsystems/system/base?attributes=resource_utilization.cpu

Memory utilization
/rest/v1/system/subsystems/system/base?attributes=resource_utilization.memory

Packets received on interface 1/1/5
/rest/v1/system/interfaces/1%2F1%2F5?attributes=statistics.rx_packets

Packets transmitted from a user-specified interface
/rest/v1/system/interfaces/{}?attributes=tx_bytes

Link states of all physical interfaces
/rest/v1/system/interfaces/*?attributes=link_state&filter=type:system

Link states of all physical interfaces in a administrative down state
/rest/v1/system/interfaces/*?attributes=link_state&filter=type:system,admin_state:down

Wildcard characters in monitored URIs

The URI passed to the Monitor function can contain the asterisk (*) wildcard character instead of a
component in the URI path.

For example:

n The following URI specifies the configuration attributes of all interfaces:
"https://192.0.2.5/rest/v1/system/interfaces/*?selector=configuration"

n The following URI specifies all routes regardless of VRF:
"https://192.0.2.5/rest/v1/system/vrfs/*/routes"

You can use wildcard characters in multiple places in the path. For example, the following Monitor function
monitors the connection state of all BGP neighbors belonging to all BGP routers in the "red" VRF:
self.monitor = Monitor("/system/vrfs/red/bgp_routers/*/

bgp_neighbors/*?attributes=conn_state",

name="BGP Neighbor Connection State")

You cannot use a wildcard character as part of the query string. For example, you cannot use the wildcard
character to specify all attributes of a BGP neighbor.

The wildcard character must replace the entire component in the path. The wildcard character is not part of
a regular expression. For example:

n You can use a wildcard to specify all VRFs, but you cannot use a wildcard character to specify all VRFs that
begin with the letter r.

n You can use a wildcard to specify all interfaces, but you cannot use the wildcard character to specify the
interfaces in member 1, slot 2.

When designing scripts that use wildcard characters in monitored URIs, be aware that using a wildcard character
for certain resources can result in high switch CPU and memory utilization, which can in turn affect the
performance of the switch.
Using a wildcard for resources such as ACLs, interfaces, VLANs, or VRFs, might not result in performance issues in
a customer environment that includes a small number of those resources. However, when the same script is
installed in a customer environment that has a large number of those resources—such as 500 interfaces—
thousands of time series instances are created.
Each monitored resource creates one time series. Each time series requires switch CPU, memory, and storage
space in the time series database. Switch performance can be affected when the resident memory resources
used by the NAE exceeds approximately 500 MB.
Monitoring the count of resources by including the count parameter in the URI—even on thousands of
resources—does not cause performance issues.

Parameters in monitored URIs
You can use user-defined parameters to define the resource ID in the URI passed to the Monitor function.

For example, instead of creating a monitor for a specific interface on a switch, you can define a parameter
for that interface. Then, when the agent is created, the user supplies the identifier of interface to be
monitored.

Parameters in monitored URIs can only be used to specify resource identifiers, which are the last part of the
path before the query string. Using parameters to specify attributes or other URI components is not
supported.

Parameters are indicated by braces {}.

The following example shows the use of a parameter for the ID of an interface:
self.monitor = Monitor("/system/interfaces/{}?attributes=rx_bytes",

[self.params["iface_id"]],name="Interface Received Bytes")

In the example:

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 100

Scripts | 101

n In the URI, instead of specifying a specific interface, the URI contains the following characters to indicate
that a parameter is expected:

{}

n The following argument indicates that the name of the user-defined parameter is iface_id:
[self.params["iface_id"]],

n The iface_id parameter is defined in the ParameterDefinitions portion of the script:
ParameterDefinitions = {

'iface_id': {

'Name': 'Interface Id',

'Description': 'Interface to be monitored',

'Type': 'string',

'Default': '1/1/1'

}

Examples of invalid parameter definitions
The following parameter definition is invalid because it attempts to create a parameter for an attribute, such
as received bytes or transmitted bytes:
Example of invalid parameter usage: attribute

self.monitor = Monitor("/system/interfaces/1%2F1%2F5?attributes={}",

[self.params["attr"]], name="Interface Received Bytes")

The following parameter definition is invalid because it attempts to create a parameter for a component of
the URI that is not the resource ID:
Example of invalid parameter: URI component not resource ID

self.monitor = Monitor("/system/{}/1%2F1%2F5?attributes=rx_bytes",

[self.params["resource"]],name="Interface Received Bytes")

Slash (/) characters in monitored URIs
To avoid mistakenly interpreting slashes in resource ID as part of the URI path, slash (/) characters in a
resource ID that is not a user-definable parameter must be encoded as: %2f or %2F.

In the path component of a URI, the slash (/) character is a reserved character that is a delimiter between
path segments. For example:
path/to/resourceID

Resources on a switch might also use the slash character in their identifications. For example:

n An interface might be identified by a member/slot/port notation, such as: 1/1/7
n A power supply unit might be identified by a member/PSU notation, such as: 1/3

To correctly specify a resource ID in a monitored URI that does not include parameters, you must substitute
%2f or %2F for each slash character in the resource ID.

The following example shows the definition of a monitor for interface 1/1/7 and does not use a parameter
for the resource ID:
self.monitor = Monitor('/rest/v1/system/interfaces/1%2f1%2f7?attributes=tx_bytes',

'Monitored interface')

If the script defines a user-defined parameter to specify the resource ID, URL encoding for the slash
character is not used when specifying the default value. Likewise, when a user enters a value for that
parameter, they do not have to use URL encoding for the slash character because the Web UI automatically
uses URL encoding when storing the value.

The following example shows parts of a script that defines interface_id as a user-defined parameter and
then passes that parameter to a Monitor function and to an ActionCLI function.
ParameterDefinitions = {

'interface_id': {

'Name': 'Monitored Interface',

'Description': 'The id of the monitored interface,

'Type': 'string',

'Default': '1/1/1'

}

}

...

self.monitor = Monitor(

'/rest/v1/system/interfaces/{}?attributes=tx_bytes',

'Monitored interface',

[self.params['interface_id']])

...

ActionCLI('show interface {}', [self.params['interface_id']]

...

Attribute filters in monitored URIs
Some types of attributes can be filtered further by specifying an attribute name and value pair instead of
just an attribute name.

For example, you might want to specify that only physical interfaces be monitored. There is no way to
specify only the physical interfaces in the URI path. However, physical interfaces have an attribute called
type, which has a value of system.

The filter keyword indicates that the value that follows the equal sign (=) is an attribute and value pair.

The filtered attribute must be the name of an attribute of the resource specified by the path component of
the URI.

The attribute must be one of the following data types:

n integer

n string

n boolean

For information about the names, types, and values of attributes of a resource, see the AOS-CX REST API
Reference.

The syntax of the attribute and value pair is the following:
attribute-name:attribute-value

Multiple attribute and value pairs are supported. Commas separate the pairs. For example:
...&filter=type:vlan,admin_state:up

Examples
The following example shows a monitored URI that specifies the received packets of all physical interfaces.
uri1 = '/rest/v1/system/interfaces/*?attributes=statistics.rx_packets&filter=type:system'

self.m1 = Monitor(uri1, 'rx on all physical interfaces')

The following example shows a monitored URI that specifies the received packets of VLAN interfaces that
are in an up state.
uri2 = '/rest/v1/system/interfaces/*?attributes=statistics.rx_

packets&filter=type:vlan,admin_state:up'

self.m2 = Monitor(uri2, 'rx on UP VLAN interfaces')

Constructing a URI using the AOS-CX REST API Reference
To construct the URI of a resource to monitor, you can use the GET method in the AOS-CX REST API
Reference to generate most of the URI. However, to do the following, you must edit the URL you copy and
paste.

n Use the dot notation to specify a component of an attribute.
n Use a filter to specify an attribute name and value pair.

Procedure

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 102

Scripts | 103

1. Log into the switch from the AOS-CX REST API Reference:
a. Use a supported browser to access the switch at: https://<IP-ADDR>/api/

<IP-ADDR> is the IP address or hostname of your switch.
b. Expand the Login resource by clicking the resource name, /login, or by clicking Expand

Operations.
c. Enter your user name in the value of theusername parameter.
d. Enter your password in the value of thepassword parameter.
e. Click Submit.

2. To expand the possible endpoints of a resource, click the resource name.

For example, CPU utilization is a kind of resource utilization, which is part of the subsystems resource
collection:

3. Click the endpoint in the GET method to expand the collection.

4. Navigate to the Parameters section and select the attribute or attributes you want to display.

You can select multiple attributes:
n To select a range of attributes, click the first attribute, then press Shift, and then click the last

attribute in the range you want to select.
n To select attributes that are not adjacent in the list, press Ctrl, then click each attribute you want

to select.
5. Click Submit.

The displayed information expands to show the curl command equivalent, the request URL, and the
response body.

In the following example, the IP address of the switch is hidden by the gray box, and the response
body is not shown.

6. Construct the monitor URI from theRequest URL and theResponse Body (if needed).
a. Copy and paste theRequest URL into your script.
b. Remove the server information and any other information you specify elsewhere (such as the

REST API version).

For example, the resulting URI is:
/rest/v1/system/subsystems?attributes=resource_utilization

c. If you are specifying subcomponent of the attribute, view theResponse Body and record the
exact name of the attribute component to add to the query portion of the URI.

For URIs specifying monitors only, you can specify components within attributes by using a "dot"
notation after the attribute name.

For example, In theResponse Body, the CPU utilization is part of the resource_utilization

resource. You can specify that only the CPU resources be monitored by adding .cpu after the
attribute name. For example: resource_utilization.cpu.

The resulting example URI to monitoring CPU utilization is the following:
/rest/v1/system/subsystems?attributes=resource_utilization.cpu

d. If you want to use the filter to specify both an attribute and a value, you must edit the URI to use
the filter keyword and specify the attribute name and the attribute value.

Aggregate operators
Aggregate operators are aggregate operations that can be computed independently of the passage of time.

Transition and ratio calculations are not considered aggregate operators.

If the monitored URI includes parameters and the monitor is an aggregate operator, the parameter must be
passed to the aggregate operator instead of to the Monitor function.

In the examples of the functions, uri2 is the following:
uri2 = '/rest/v1/system?attributes=resource_utilization_poll_interval'

The aggregate operators are the following:
Count

Counts the number of distinct time-series data points that have been generated and implicitly reflects
the count of data points collected at every data collection interval.
Example:

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 104

Scripts | 105

count_m = Count(uri2)

self.m11 = Monitor(count_m, name='Resource Utilization Poll Interval')

Sum

Calculates the sum of the monitored resource values. When the monitored URI contains wildcard
characters, this function sums over the current values of all resources pointed to by expanding the
wildcards.
Example:
sum_m = Sum(uri2)

self.m9 = Monitor(sum_m, name='Resource Utilization Poll Interval')

Min or Max

Calculates the minimum or maximum of the monitored resource values. When the monitored URI contains
wildcard characters, this function returns the minimum or maximum value over the current values of all
resources pointed to by expanding the wildcards.

Example Max:
max_m = Max(uri2)

self.m15 = Monitor(max_m, name='Resource Utilization Poll Interval')

Average

Calculates the average of the monitored resource values. When the monitored URI contains wildcard
characters, this function calculates and returns the average value over the current values of all resources
pointed to by expanding the wildcards.
Example:
avg_m = Average(uri2)

self.m17 = Monitor(avg_m, name='Resource Utilization Poll Interval')

Aggregate functions
Aggregate functions are time-dependent and are computed over a time interval. Aggregate functions
include the rate function and functions with names that include the keyword OverTime. Aggregate
functions must specify a time interval.

Transition and ratio calculations are not considered aggregate functions.

If the monitored URI includes parameters and the monitor is an aggregate function, the parameter must be
passed to the aggregate function instead of to the Monitor function.

For example:
uri2 = '/rest/v1/system/interfaces/{}?attributes=statistics.rx_packets'

avg_m = AverageOverTime(uri2, "1 hour", [self.params['interface_id']])

self.m2 = Monitor(avg_m, 'Rx Packets')

In the examples of the functions, uri2 is the following:
uri2 = '/rest/v1/system?attributes=resource_utilization_poll_interval'

The aggregate functions are the following:
CountOverTime

Counts the number of distinct time-series data points that have been generated during the specified
period of time.
Example CountOverTime:
count_over_m = CountOverTime(uri2, "5 minutes")

self.m2 = Monitor(

count_over_m, name='Resource Utilization Poll Interval')

SumOverTime

Calculates the sum of the monitored resource values that occurred during the specified period of time.
When the monitored URI contains wildcard characters, this function sums over the current values of all
resources pointed to by expanding the wildcards.
Example SumOverTime:
sum_over_m = SumOverTime(uri2, "5 minutes")

self.m10 = Monitor(

sum_over_m, name='Resource Utilization Poll Interval')

MinOverTime

Calculates the minimum of the monitored resource values. When the monitored URI contains wildcard
characters, this function returns the minimum value over the current values of all resources pointed to
by expanding the wildcards.
Example MinOverTime:
min_over_m = MinOverTime(uri2, "5 minutes")

self.m2 = Monitor(

min_over_m, name='Resource Utilization Poll Interval')

MaxOverTime

Calculates the maximum of the monitored resource values. When the monitored URI contains wildcard
characters, this function returns the maximum value over the current values of all resources pointed to
by expanding the wildcards.
Example: MaxOverTime:
max_over_m = MaxOverTime(uri2, "5 minutes")

self.m16 = Monitor(

max_over_m, name='Resource Utilization Poll Interval')

AverageOverTime

Calculates the average of the monitored resource values over the specified period of time. When the
monitored URI contains wildcard characters, this function calculates and returns the average value over
the current values of all resources pointed to by expanding the wildcards.
Example AverageOverTime:
avg_over_m = AverageOverTime(uri2, "5 minutes")

self.m18 = Monitor(

avg_over_m, name='Resource Utilization Poll Interval')

Rate

Calculates the per-second average rate of increase for the monitored resource value over the specified
period of time. When the monitored URI contains wildcard characters, this function calculates the per-
second average rate of increase for each of the monitored resources pointed to by expanding the
wildcards.
Example:
rate_m = Rate(uri2, "5 minutes")

self.m8 = Monitor(rate_m, name='Resource Utilization Poll Interval')

Time interval
The format of the time interval is the following:
"<number> <unit>"

The value for <unit> is one of the following:

n second

n seconds

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 106

Scripts | 107

n minute

n minutes

n day

n days

n hour

n hours

For example: "12 seconds"

Nested aggregate functions and operators
Nesting an aggregate function or operator inside of an aggregate function enables you to combine the
capabilities of both to create one result. The nested function or operator is executed first, and then the
enclosing operator is executed.

For example, the following nested function calculates the rate of the switch resource and sums the
calculated rates across all the URIs pointed to by the expanded wildcard:
Sum(Rate(<uri-with-wildcard>))

Rules

n You can nest up to one aggregate function or aggregate operator inside an aggregate operator.

For example: Min(CountOverTime(<uri>)) and Min(Sum(<uri>)) are supported.
n You cannot nest an aggregate operator or aggregate function inside an aggregate function.

For example, Rate(Sum(<uri>)) and CountOverTime(Min(<uri>)) are not supported.
n You cannot nest two of the same aggregate operators.

For example, Sum(Sum(<uri>)) is not supported.

Aggregate functions in monitors and conditions
If an aggregate function or operator is used in the definition of the monitor, an aggregate function or
operator can not be used in a condition expression for that monitor.

If the aggregate function is defined at monitor level, the time series graph for the monitored resource is a
graph of the results of that aggregate function. In contrast, if the aggregate function is used in the condition
expression, the time series graph for the agent in the Web UI is based on raw data.

The following example shows an aggregate function, Average(uri), that is defined in the monitor. The
function uses the wildcard to average the received packets from all the interfaces, resulting in a graph with a
single curve, and triggering an alert when that average is over 50.
uri = '/rest/v1/system/interfaces/*?attributes=statistics.rx_packets'

avg = Average(uri)

self.monitor1 = Monitor(avg, name='Average Rx Packets on All Interfaces')

self.rule1 = Rule('Rx Packets')

self.rule1.condition('{} > 50', [self.monitor1])

The following example shows the avg aggregate function used in a condition expression. The monitor
results in a graph that has multiple curves, with one curve corresponding to each interface received packet
value. In the example, the condition self.rule2.condition triggers an alert when the average of received
packets on an interface becomes greater than 50 within the past five minutes.
uri = '/rest/v1/system/interfaces/*?attributes=statistics.rx_packets'

avg = AverageOverTime(uri, "5 minutes")

self.monitor2 = Monitor(uri, name='Rx Packets on All Interfaces')

self.rule2 = Rule('Rx Packets')

self.rule2.condition('avg {} > 50', [self.monitor2])

Rules
Rules are optional components of the agent constructor, which is the main body of the Aruba Network
Analytics Engine script.

When you monitor something on a switch, you can define rules to execute actions when certain conditions
are true. For example, you might define a rule to send a message to the system log when CPU utilization
exceeds 90% of capacity.

A script can have multiple rules using any combination of monitors previously specified on the script. A rule
must include a condition, but actions are not required. A rule that does not include actions do not generate
an alert when a condition transitions to true or to false.

A rule consists of the following components:

n The Rule function, to which a text string identifying the rule is passed as an argument. For example:
Rule('High CPU utilization by ' + daemon_name)

n A condition, defined by the condition function of the rule.
n Zero or more actions, each of which is defined by the action function of the rule. Actions are executed if

the condition transitions from false to true.
n Zero or more clear actions, each of which is defined by the clear_action function of the rule. Clear

actions are executed if the condition transitions from true to false.

self.r1 = Rule('Minor CPU Utilization')

self.r1.condition(

'{} >= {}',

[self.m1,

self.params['minor_threshold']])

self.r1.action(self.action_minor_avg_cpu)

self.r1.clear_action(self.action_clear_minor_avg_cpu)

You can also create time-based rules that execute actions at a regular interval instead of in response to the
conditions of a monitored URI.

For example, you can use the every keyword to create a rule that executes an action every 60 seconds:
self.r1 = Rule("Periodic callback")

self.r1.condition("every 60 seconds")

self.r1.action(self.my_periodic_callback)

You can use parameters to make the interval configurable. However time-based rules do not support clear
conditions, conjunction operators, or disjunction operators.

Conditions
The condition and the clear condition are the part of the rule that determines which actions are executed.

When an agent is created, the condition associated with the rule is active and the clear condition is inactive.
Time series data is collected every 5 seconds. Conditions and clear conditions—if any—are evaluated at each
time series data collection point.

When the condition is active and transitions from false to true:

n The rule actions, if any, are executed.
n The condition becomes inactive. The condition does not become active again until the clear condition is

true and becomes inactive.
n The clear condition becomes active.

When the clear condition is active and transitions from false to true:

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 108

Scripts | 109

n The clear actions, if any, are executed.
n The clear condition becomes inactive.
n The condition becomes active.

A condition can contain any number of monitors in its expression.

The following is an example of a condition in a rule:
Monitoring average cpu value crossing 'minor_threshold' value that is set

over a given time interval

self.r1.condition(

'{} >= {}',

[self.m1,

self.params['minor_threshold']])

self.r1.action(self.action_minor_avg_cpu)

self.r1.clear_action(self.action_clear_minor_avg_cpu)

The condition function contains the condition expression (in quotes) and, optionally, any parameters used
in the condition expression.

In the example, the condition expression is relatively simple. The condition expression uses the >= operator
to compare the current CPU value to the value of the minor_threshold parameter.

Condition and clear condition expressions can be complex and include aggregation functions, pauses and
durations in monitoring, and support for time-series data.

Clear conditions
The clear condition is an optional part of the rule that determines when a network condition or event is no
longer occurring.

When an agent is created, the condition associated with the rule is active and the clear condition is inactive.
When the condition becomes true:

n The condition becomes inactive and the clear condition becomes active.
n The condition does not become active again until the clear condition is true.

Using a clear condition can help to prevent the numerous alerts that can occur when monitored data
fluctuates narrowly above and below the threshold.

For example, consider a rule that sets the alert level to critical when CPU utilization exceeds 90%, and
removes the alert level when the condition is no longer true.

n If you do not define a clear condition and the CPU utilization frequently fluctuates between 85% and
91%, the monitor generates alerts and then removes the alert level every time the fluctuation occurs.

n Instead, if you define a clear condition to be when the CPU utilization drops below 70%, the following
behavior occurs:
o The first time the CPU utilization exceeds 90%, the alert level is set to critical. The condition becomes

inactive and it is no longer evaluated. Instead, the clear condition becomes active, and is evaluated at
regular intervals.

o The CPU utilization can fluctuate from above 90% to as low as 70%, an unlimited number of times.
The alert level remains critical and additional alerts are not generated.

o The clear action—removing the alert level—is executed only when the clear condition becomes true—
the CPU utilization drops below 70%. The clear condition becomes inactive and is no longer
evaluated. The condition becomes active again and is evaluated at regular intervals.

In effect, one of the ways you can use a clear condition is to use it in combination with the condition to set
both a high threshold and a low threshold.

You define a clear condition using the clear_condition function. The clear_condition function contains
the condition expression (in quotes) and, optionally, any parameters used in the condition expression.

Example of a clear condition in a monitor:
self.monitor = Monitor(AverageOverTime("/rest/v1/system/subsystems/management_

module/1%2F5?attributes=resource_utilization.cpu", "5 minutes")

self.rule = Rule("")

self.rule.condition("{} > 90", [self.monitor])

seld.rule.action("ALERT_LEVEL", AlertLevel.CRITICAL)

self.rule.clear_condition("{} < 70", [self.monitor])

self.rule.clear_action(self.set_normal)

Condition expression syntax
The condition of a rule is a one-line expression that uses the following syntax, expressed in EBNF (Extended
Backus-Naur) notation:
uri = ? https://tools.ietf.org/html/rfc3986 ?

enum = ? string ?

integer = ? signed int64 ?

list_element = '"' , (enum | integer) , '"'

list = list_element , { "," , list_element }

operator = "<" | ">" | "==" | "!=" | "<=" | ">="

over = "over" , integer , time

for = "for" , integer , time

time = "second" | "seconds" | "minute" | "minutes" | "day"

| "days" | "hour" | "hours" | "day" | "days"

aggregator = "count" | "sum" | "min" | "max" | "avg"

pause = "pause" , integer , time

operation1 = uri , operator , list , [for] , [pause]

operation2 = aggregator , [over] , uri , operator , integer ,

[for] , [pause]

operation3 = "rate" , uri, "per" , integer , time , operator , float ,

[for] , [pause]

operation4 = "transition" , uri , "from" , list , "to" , list

operation5 = "ratio", "of", uri, "and", uri | integer, operator, integer,

[for] , [pause]

operation6 = "every", integer, time

A condition expression can be only in the format described by the operations operation1 through
operation6.

In operation1, the >, < , <=, and >= operators cannot be applied if list token is of type enum.

The behaviors of the supported functions depend on whether the monitored URI contains wildcards.

If an aggregation function is used in the definition of the monitor, the equivalent aggregation function
cannot be used in a condition expression for that monitor.

Durations, evaluation delays, and pauses in condition expressions
The following are the behaviors when condition expression includes durations and either evaluation delays
or evaluation pauses.

A duration is an number followed by a space followed by one of the values for the time keyword.

for followed by a duration
If a condition expression has the for keyword followed by a duration, the expression will be evaluated
and monitored for that particular duration before the condition is considered true and any rule actions
are executed.
For example, the following condition expression is true only if the count of the conn_state has been less
than 5 for three minutes:
count /v1/system/vrfs/red/bgp_routers/bgp_neighbors/?attributes=conn_state < 5 for 3

minutes

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 110

Scripts | 111

pause followed by a duration
If a condition expression has the pause keyword followed by a duration, the condition will not be
monitored for the specified duration after the condition is met. However, because the condition is true,
any rule actions are executed before monitoring is paused.
For example, the following condition expression specifies that the spanning tree tcn_count will not be
monitored for one minute after the tcn_count is greater than 10.
/v1/system/vlan/1/spanning_tree/tcn_count > 10 pause 1 minute

Using these kinds of expressions can reduce the number of actions taken—such as log entries
generated—when a network condition is temporary, but still ensure that actions are taken at intervals
the administrator considers to be reasonable.

Examples
rate /v1/system?attributes=resource_utilization_poll_interval > 300 per 1 hour for 5 hours

rate /v1/system?attributes=resource_utilization_poll_interval > 300 per 2 hours for 5 days

avg over 1 minute /v1/system/interface/1?attributes=statistics.tx_dropped < 5 for 2 minutes

rate /v1/system?attributes=resource_utilization_poll_interval > 300 per 10 seconds for 5

minutes

avg over 1 minute /v1/system/interface/1?attributes=statistics.tx_dropped < 5 for 2 minutes

pause 10 seconds

Conjunction (AND), disjunction (OR), and multiple subconditions
When you define a condition, you can create an expression that combines multiple subcondition
expressions using the operators AND, OR, and parenthesis.

The condition function returns true if the combination of the subconditions is true.

Operator precedence:

1. Parenthesis operator: ()
2. AND operator
3. OR operator

For example, consider the following expression:
SubCondition1 AND SubCondition2 OR Subcondition3

Because there are no parentheses in this expression, the AND operation is evaluated first. The result of that
evaluation is then evaluated against Subcondition3 using the OR operator. The condition function returns
the result of the second evaluation. The following table shows the results according to the evaluation of
each subcondition:

Subcondition1 Subcondition2 Subcondition3 Result

true true false true

true false false false

false true false false

false false false false

true true true true

Subcondition1 Subcondition2 Subcondition3 Result

true false true true

false true true true

false false true true

The following example shows a condition with three different subconditions:

1. Resource Utilization Poll Interval > 50
2. Spanning tree hello time > 5
3. VLAN admin status = down

Example:
uri1 = '/rest/v1/system?attributes=resource_utilization_poll_interval'

self.m1 = Monitor(uri1, name='Resource Utilization Poll Interval')

uri2 = '/rest/v1/system?attributes=stp_config.hello_time'

self.m2 = Monitor(uri2, name='Spanning tree hello time')

uri3 = '/rest/v1/system/vlans/{}?attributes=admin'

self.m3 = Monitor(uri3, 'Vlan admin status', [self.params['vlan_id']])

self.r1 = Rule("Rule 1")

self.r1.condition('({} > 50 AND {} > 5) OR {} == "down"', [self.m1, self.m2, self.m3])

self.r1.action(self.action_callback1)

Function behavior when monitored URI does not contain wildcards
The following are the behaviors of the supported condition expression functions when the monitored URI
does not contain wildcards—and thus points to one specific resource:
count

This function counts the number of distinct time-series data points that have been generated and
implicitly reflects the "count" of data points collected at each data collection interval.
For example, applying the count function to the following URI results in a value of 1.
/rest/v1/system/subsystems/chassis/base?attributes=resource_utilization.cpu

sum, min, max, and avg

Because there is just one resource, these aggregators return the current value of the resource. These
aggregators only apply to resources represented by integers, such as number of packets received or CPU
utilization.

Aggregator over time

When the keyword over follows one of the aggregators, the function behaves in a similar way but
performs its aggregation "over" the specified time in the past instead of over the current value only.

rate

The rate function calculates the per-second average rate of increase of the monitored resource.
For example, applying the rate function to the following URI calculates the per-second average of the
received packets on interface 1/1/5 for the last one minute:
/rest/v1/system/interfaces/1%2F1%2F5?attributes=statistics.rx_packets per 1 minute

transition

The transition evaluates to true if the specified resource changes state as defined.
The transition function only applies to columns of type boolean, enum, and list.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 112

Scripts | 113

For example, the following expression is true when port 1/1/5 goes down:
transition /rest/v1/system/ports/1%2F1%2F5?attributes=admin from "up" to "down"

ratio

The ratio function calculates the ratio between numerator and denominator of the specified resource.
The ratio function only applies to columns of type integer and has the restriction that the part of URI
preceding the token '?' be the same. That is, the ratio function can calculate the ratio between two
attributes of the same resource, but not between attributes of different resources.
For example, to determine the ratio of the received packets to transmitted packets for interface 1/1/5,
use the following expression:
ratio of /rest/v1/system/interfaces/1%2F1%2F5?attributes=statistics.rx_packets and

/rest/v1/system/interfaces/1%2F1%2F5?attributes=statistics.tx_packets

Function behavior when monitored URI has wildcards
The following are the behaviors of the supported condition expression functions when the monitored URI
contains wildcards and thus points more than one resource:
count

This function counts the number of distinct time-series data points that have been generated and
implicitly reflects the "count" of data points collected at each data collection interval.
For example, the count function applied to the following URI results in the number of subsystems that
are present:
/rest/v1/system/subsystems/*/base?attributes=resource_utilization.cpu

sum

When the monitored URI contains wildcards, this function sums over the current values of all resources
pointed to by expanding the wildcard. This function only applies to columns of type integer.
For example, the sum function applied to the following URI is the sum total of the value of the CPU
utilization of all subsystems configured in the system.
/rest/v1/system/subsystems/*/base?attributes=resource_utilization.cpu

min and max

When the monitored URI contains wildcards, these functions return the minimum or maximum of the
current value of all currently present resources pointed to by expanding the wildcard. This function only
applies to columns of type integer.
For example, the min function applied to the following URI returns the current minimum number of
received packets across all configured interfaces. In other words, you can use this function to determine
which interface received the fewest number of packets at this evaluation point.
/rest/v1/system/interfaces/*?attributes=statistics.rx_packets

avg

This function performs an average over the current values of all currently present resources pointed to
by expanding the wildcard. This function only applies to columns of type integer.
For example, the avg function applied to the following URI returns the average number of transmitted
packets across all configured interfaces:
/rest/v1/system/interfaces/*?attributes=statistics.tx_packets

Aggregator over time

When the keyword over follows one of the aggregators, the function behaves in a similar way but
performs its aggregation "over" the specified time in the past instead of over the current value only.
When the URI contains wildcards, the computation happens over each resource represented by the
wildcard.

rate

The rate function calculates the per-second average rate of increase for each of the monitored
resources.
For example, if interfaces 1/1/5 and 1/1/6 have been configured, using the following expression returns
the ratio of received packets to transmitted packets for each of the two interfaces:
/rest/v1/system/interfaces/*?attributes=statistics.rx_packets per 1 minute

transition

Similar to rate, the transition function finds the transitions for each of the resources pointed to by
expanding the wildcard in the monitored URI.
The transition function only applies to columns of type boolean, enum, and list.
For example, the following expression is true for every configured port that goes down:
transition(/rest/v1/system/ports/*?attributes=admin) from "up" to "down"

ratio

The ratio function finds the ratio between numerator and denominator for each of the resources
pointed to by expanding the wildcard.
For example, if interfaces 1/1/5 and 1/1/6 have been configured, using the following expression returns
the ratio of received packets to transmitted packets for each of the two interfaces:
ratio of /rest/v1/system/interfaces/*?attributes=statistics.rx_packets and

/rest/v1/system/interfaces/*?attributes=statistics.tx_packets

Actions
Actions are executed depending on the truth value of the condition in a rule.

Actions might include things like setting the agent status, executing certain CLI commands, or generating
system log messages.

Types of actions include the following:

Predefined action
Predefined actions are actions that are built in to the Aruba Network Analytics Engine framework.

Callback actions
Callback actions are callback functions defined in the script to perform additional processing.

Clear actions
Clear actions are predefined actions or callback actions that are executed only when the clear condition
of a rule is active and transitions from false to true.

Predefined actions
Predefined actions are action functions that are built in to the Aruba Network Analytics Engine framework.
These functions enable the agents of a script to do the following:

n Execute CLI commands in the AOS-CX network operating system.
n Execute shell commands in the underlying operating system of the switch.
n Send messages to the system log.
n Generate custom reports that communicate information collected by the agent.

ActionCLI, CLI action

Syntax

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 114

Scripts | 115

Inside a callback action:
ActionCLI("<command>"[, title=<title>])

Outside of a callback action:
self.r.action("CLI","<command>"[, title=<title>])

Description
The CLI action executes the specified command from the switch CLI.

Parameters
<command>

A text string of the CLI command as it would be entered at a switch prompt. Examples:

n show vlan 100

n show running-config

n top memory

The string can be either a single line or a multiline string with line breaks using any Python line break
technique.

<title>

Specifies the title to be displayed for this action. The definition of <title> must use the Title function.
For example: title=Title("interface 1/1/1 no shutdown")

Usage

n All CLI commands are supported as input to CLI actions.
n Command strings are passed without validation.
n The first CLI action executed in a script starts from the manager (#) command context. To execute

commands in another context, you must include the commands to enter that context.

For example, to execute a configuration command, you must enter the correct configuration context, as in
the following action:
ActionCLI("config\ninterface 1/1/1\nno shutdown")

Similar to a single CLI session, subsequent CLI actions in the script execute from the command context that
is in place after the previous command is executed. In the previous example, the command context is the
config context, and the next CLI action starts in the config context. Commands that cannot be executed in
the config context fail.
n As a best practice, include commands in each CLI command to return to a standard command context

appropriate for the script—such as the manager (#) context. For example:
ActionCLI("config\ninterface 1/1/1\nno shutdown\nexit\nexit")

n You can create a custom title for this action. The title you create can help the user of the Web UI to
determine what action was executed. The title is displayed in theAction Results section of theAlert
Details dialog box.

Examples
Examples of a multiline CLI actions:
ActionCLI("config\ninterface 1/1/1\nno shutdown\nexit\nexit")

Example of a CLI action that uses a parameter:
ActionCLI("show interface {}",[self.params["iface_id"]])

Example of a CLI action that uses a parameter and a custom title:
title = Title("Print interface {} details",[self.params["iface_id"]])

self.ActionCLI("show interface {}", [self.params["iface_id"]], title=title)

ActionCustomReport

Syntax
Inside a callback action:
ActionCustomReport(<template>[, <params>][, title=<title>])

Description
Generates a multiple line report with customized content. The report content can be viewed in the Web UI
from the alert details for the agent.

Parameters
<template>

Specifies the report template to use when generating this report. This template must be defined
elsewhere in the script.

<title>

Specifies the title to be displayed for this action. The definition of <title> must use the Title function.
For example: title=Title("Generate final MAC report")

Usage
This function can only be used inside a callback action.

The script must contain the template (code) that generates and formats the report.

You can create a custom title for this action. The title you create can help the user of the Web UI to
determine what action was executed. The title is displayed in theAction Results section of theAlert
Details dialog box.

Examples
Example of calling the custom report action with a parameter:
ActionCustomReport(my_template, [self.params["author"]])

Example of generating a custom report in HTML format:
uri1 = '/rest/v1/system/vlans/{}/macs/?count'

self.m1 = Monitor(uri1, 'Mac address count', [self.params['vlan_id']])

self.r1 = Rule('MAC Address Learnt')

self.r1.condition(

'{} > 0 pause {} minutes',

[self.m1, self.params['alert_pause']])

self.r1.action(self.gen_custom_report)

def gen_custom_report(self, event):

vlan_id = self.params['vlan_id'].value

type_s = ["dynamic", "static", "mclag", "vrrp"]

mac_report = []

for m in type_s:

mac_all_dict = self.get_mac_result(vlan_id, m)

mac_report.append(mac_all_dict)

final_report = self.generate_htmlreport(mac_report)

ActionCustomReport(final_report, title=Title("Generate final MAC report"))

def get_mac_result(self, vlan_id, mac_type):

url = 'http://127.0.0.1:5577/rest/v1/system/vlans/' \

+ str(vlan_id) + '/macs?count=true&filter=from:' + \

mac_type

r1 = self.rest_get(url)

result = str(r1.json()["count"])

return result

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 116

Scripts | 117

def generate_htmlreport(self, mac_report):

html_prefix = '''<html>

<head>

<title>HPE-Aruba</title>

</head>

<body>

<table border="1">

<tr align="center">

<th><td colspan="4">Summary</td></th>

</tr>

<tr align="center">

<th>

<td colspan="4">

Number of MAC learnt on various types

</td>

</th>

</tr>

<tr>

<th> DYNAMIC </th>

<th> STATIC </th>

<th> MCLAG </th>

<th> VRRP </th>

</tr>

''' + self.get_mac_htmlcontent(mac_report) + '''

</table>

</body>

</html>'''

return html_prefix

For another example of a custom report, see the ospfv2_interface_state_flaps_impact_monitor

solution on the Aruba Solutions Exchange.

ActionShell, SHELL action

Syntax
Inside a callback action:
ActionShell("<command>"[, title=<title>])

Outside of a callback action:
self.r.action("SHELL","<command>"[, title=<title>])

Description
The SHELL action executes the specified command in the Bash shell of the underlying Linux operating
system of the switch.

Parameters
<command>

A text string of the shell command as it would be entered at a Linux prompt.
The string can be either a single line or a multiline string with line breaks using any Python line break
technique.

<title>

Specifies the title to be displayed for this action. The definition of <title> must use the Title function.
For example: title=Title("ps -aux")

Usage
The SHELL action takes a string as input and pipes it to the switch Bash shell.

For example, the following ActionShell request lists the current processes running on the switch:
ActionShell("ps -aux")

You can create a custom title for this action. The title you create can help the user of the Web UI to
determine what action was executed. The title is displayed in theAction Results section of theAlert
Details dialog box.

Shell commands provide advanced and powerful access to the switch. Improper changes can make the switch
inoperable, potentially requiring the switch to be zeroized.

The shell is enabled on the switch by default. However, if the switch is configured to use enhanced secure
mode, access to the shell is denied. Agent attempts to execute a shell action are denied, and theAction
Result dialog box for that shell action indicates an error. However, the agent and the script are not set to an
error state, so the error can be ignored. For more information about enhanced secure mode, see the
Security Guide.

When shell actions enabled on a switch:

n SHELL actions execute with root privileges.
n The first SHELL action in a script executes from the root (/) directory.
n All Bash shell commands are supported as SHELL actions.
n Command strings are passed without validation.
n SHELL actions can be used with parameters.

Examples
Example of a SHELL action inside a callback action:
ActionShell("cd {}",[self.params["path"])

Example of a SHELL action outside of a callback action:
self.r.action("SHELL", "cd {}",[self.params["path"])

Example of a SHELL action that includes a custom title:
title=Title("cd {}",[self.params["path"])

self.r.action("SHELL", "cd {}",[self.params["path"], title=title)

ActionSyslog, Syslog action

Syntax
Inside a callback action:
ActionSyslog(

"<log_message>"

[, severity=<severity>]

[, title=<title>])

Outside of a callback action:
self.r.action("Syslog",

"<log_message>"

[, severity=<severity>]

[, title=<title>])

Description
The ActionSyslog action enters the specified message in the event log. Users can access event log messages
from the CLI, REST API, or Web UI of the switch.

Parameters
<log_message>

A text string of the message to be entered into the log.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 118

Scripts | 119

The size and content of this message is subject to the same requirements as any other event log message
on this system.

<severity>

Specifies the severity of the log message.
The Aruba Network Analytics Engine supports the following values:

n SYSLOG_ALERT
n SYSLOG_CRIT
n SYSLOG_ERR
n SYSLOG_WARNING
n SYSLOG_INFO

Default: SYSLOG_INFO
<title>

Specifies the title to be displayed for this action. The definition of <title> must use the Title function.
For example: title=Title("Report CPU utilization")

Usage
Use this action to record event log messages that can be accessed from the CLI, REST API, or Web UI of the
switch.

This action sends a message to the event log. Log messages are labeled with a severity level. Only the
specified message is sent to the log—additional information such as the monitor or agent name is not
included.

You can create a custom title for this action. The title you create can help the user of the Web UI to
determine what action was executed. The title is displayed in theAction Results section of theAlert
Details dialog box.

Examples
The following example sends a message to the event log, using the parameter message, inside a callback
action:
ActionSyslog("Sample message: {}", [self.params["message"]], severity=SYSLOG_WARNING,

facility=SYSLOG_DAEMON)

The following example sends a message to the event log, using the parameter message, outside of a callback
action:
self.r.action("Syslog", "Sample message: {}", [self.params["message"]])

Callback actions
Callback actions are callback functions that call other Python methods in the script to perform further
processing. Callback actions can also call predefined actions and functions that have been imported from
the supported Python modules or third-party libraries.

Callback actions are executed when the condition of a rule is true. If a callback action calls a predefined
action, that predefined action is executed asynchronously. Callback actions time out after five minutes. This
timeout interval is not editable.

This example contains a callback action, action_high_poll_interval, that calls the predefined actions
ActionSyslog and ActionCLI:

uri = '/rest/v1/system?attributes=resource_utilization_poll_interval'

self.m = Monitor(uri, name='My Monitor')

self.r = Rule('Resource Utilization Poll Interval')

self.r.condition('{} > 100 for 30 seconds', [self.m])

self.r.action(self.action_high_poll_interval)

def action_high_poll_interval(self, event):

self.set_alert_level(AlertLevel.CRITICAL)

ActionSyslog('High Poll Interval')

ActionCLI("show running-config")

Aruba Network Analytics Engine agent sandboxes run in the default VRF. If a script has a function that
requires access to the Internet, this function fails unless the switch administrator configures a DNS name
server on the default VRF.

When a condition is met, an event is generated and the callback action is executed using the event details.
The event parameter passed to the callback action contains those event details.

The event parameter contains a dictionary of key-value pairs. The dictionary includes the following keys:
event['labels']

The labels created by the time-series database.
event['condition_name']

The name of the condition that triggers the event.
event['monitor_name']

The name of the monitor.
event['time_series']

The name of the time series metric.
event['value']

The value of the time series metric.
event['timestamp']

The timestamp of the generated event.
event['condition_description']

The description of the condition that triggered the event.

Clear actions
You can define actions to execute when a clear condition is active and becomes true. These actions are
called "clear actions" because they often do things like set an alert level back to a normal value or reset
status.

For example, if you define an action to send a message to the log if the CPU utilization gets above 90%, you
can also define an action to send a different message to the log when a CPU utilization that was above 90%
drops to a lower utilization.

The clear action is executed only once—when the condition becomes invalid and the clear condition
becomes valid:

n If the rule does not have a clear condition defined, the default behavior is that the clear condition
becomes valid when the condition transitions from true to false.

For example, if the CPU utilization is greater than 90% (the condition is valid or true), the clear action is
executed when the CPU utilization is equal to or less than 90% (the condition becomes invalid), but not if it
continues to drop or if it remains less than 90% the next time the condition is evaluated. However, if the
CPU utilization becomes greater than 90% again, the clear action will be executed the next time the CPU
utilization drops to less than the threshold of 90%.
n If the rule has a clear condition defined, the clear condition becomes active the first time the condition

becomes true. However, the clear condition does not become valid until it is both active and it becomes
true.

For example, consider a clear condition that becomes true when the CPU utilization drops below 70%. After
the CPU utilization is becomes greater than 90% the clear condition becomes active, but it does not become

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 120

Scripts | 121

true until the CPU utilization drops below 70%. Therefore the clear action is not executed until a CPU
utilization that has been above 90% drops below 70%.

Both predefined and callback actions can be used in clear actions.

The following is an example of a rule that includes an action and two clear actions. In the example:

n One of the clear actions calls the CLI action to execute the show running-config CLI command:
self.rule.clear_action("CLI","show running-config")

n The other clear action calls the set_normal function, which removes the alert level:
self.rule.clear_action(self.set_normal)

The following example shows a monitor that has a rule that defines a clear actions and a clear condition:
self.monitor = Monitor(AverageOverTime("/rest/v1/system/subsystems/management_

module/1%2F5?attributes=resource_utilization.cpu", "5 minutes")

self.rule = Rule("")

self.rule.condition("{} > 90", [self.monitor])

seld.rule.action("ALERT_LEVEL", AlertLevel.CRITICAL)

self.rule.clear_condition("{} < 70", [self.monitor])

self.rule.clear_action(self.set_normal)

def set_normal(self, event):

self.remove_alert_level()

The following example shows a monitor with a rule that defines clear actions but does not define a clear
condition:
self.monitor = Monitor(AverageOverTime("/rest/v1/system/subsystems/management_

module/1%2F5?attributes=resource_utilization.cpu", "5 minutes")

self.rule = Rule("High CPU Utilization")

self.rule.condition("{} > 90" [self.monitor])

self.rule.action(self.action_high_cpu)

self.rule.clear_action("CLI","show running-config")

self.rule.clear_action(self.set_normal)

def action_high_cpu(self, event):

CPU value when the Condition met

cpu = event["/v1/system/subsystems/system/base?attributes=resource_utilization.cpu"]

ActionSyslog("CPU Utilization at %d" % cpu)

ActionCLI("top cpu")

def set_normal(self, event):

self.remove_alert_level()

Alert level functions
The Aruba Network Analytics Engine provides several predefined functions related to alerts.

The alert level functions get, set, or remove the alert level of the agent:
get_alert_level()

Gets the current alert level of the agent.
Example:
status = self.get_alert_level()

set_alert_level(<Alert_Level>)

Sets the alert level of the agent.
Example:
self.set_alert_level(AlertLevel.CRITICAL)

The <Alert_Level> must be one of the following values:
AlertLevel.CRITICAL

The agent has detected a critical issue.

AlertLevel.MAJOR

The agent has detected a major issue.
AlertLevel.MINOR

The agent has detected a minor issue.
remove_alert_level()

Removes the alert level of the agent.
Example:
self.remove_alert_level()

Logging functions
The Aruba Network Analytics Engine provides the predefined logger functions for sending messages to the
log and to set logging levels.

logger.setLevel(<level>)

Sets the default logging level specified by <level>. Valid values for <level> are the following:

n EMERG
n ALERT
n CRITICAL
n ERROR
n WARNING
n NOTICE
n INFO
n DEBUG

logger.log("<message>")

Sends the specified <message> at the default log level to the system log.

To send a message at a log level that is not the default log level, you can use one of the following functions:

n logger.emerg("<message>")

n logger.alert("<message>")

n logger.critical("<message>")

n logger.error("<message>")

n logger.warning("<message>")

n logger.notice("<message>")

n logger.info("<message>")

n logger.debug("<message>")

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 122

Chapter 12
Agents

Agents
An Aruba Network Analytics Engine agent is a specifically-configured executable instance of an Aruba
Network Analytics Engine script on a switch. When the agent is enabled, it performs the tasks defined by the
script.

Aruba Network Analytics Engine agent sandboxes run in the default VRF. If a script has a function that
requires access to the Internet, this function fails unless the switch administrator configures a DNS name
server on the default VRF.

Agents and user authority
Agents have administrator authority to perform tasks such as executing CLI commands.

You must have administrator authority to create, delete, enable, disable, or change the configuration of
agents. You cannot delete built-in agents.

Rules for agent names
The <agent_name>must have the following characteristics:

n The name must be unique among the agents created for the script.
n The name must be a text string that starts with a letter or number and can contain alphanumeric

characters and the special characters . (dot), - (hyphen), and _ (underscore). Minimum length: three
characters. Maximum length: 80 characters.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 123

Chapter 13
Network Analytics Engine commands

Network Analytics Engine commands

show nae-agent
show nae-agent [vsx-peer]

Description
Shows information about the Aruba Network Analytics Engine agents that are configured and enabled on
the switch.

Parameter Description

vsx-peer Shows the output from the VSX peer switch. If the switches do not
have the VSX configuration or the ISL is down, the output from the
VSX peer switch is not displayed. This parameter is available on
switches that support VSX.

Usage
This command shows the following information about the Aruba Network Analytics Engine agents that are
configured and enabled on the switch:

Agent Name
The name of the agent. Length: 3 through 80 characters.

Script Name
The name of the script. Length: 3 through 80 characters.
Example: system_resource_monitor_mm1.default

Version
The version number of the script.

Origin
The origin of the script:
system

Indicates that the script is provided as part of the system software.
user

Indicates that a user loaded the script.
Disabled

Indicates whether the agent is disabled or enabled on the switch:
true

Indicates that the agent is disabled.
false

Indicates that the agent is enabled on the switch.
Status

The current state of the agent. Status values are the following:
CRITICAL

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 124

Network Analytics Engine commands | 125

The agent has encountered a critical error during execution. For information about the error, see the
Analytics Dashboard of the Web UI.

MAJOR
The agent has encountered a major error during execution. For information about the error, see the
Analytics Dashboard of the Web UI.

MINOR
The agent has encountered a minor error during execution. For information about the error, see the
Analytics Dashboard of the Web UI.

NORMAL
Indicates that the agent is actively monitoring network conditions and handling events.

UNKNOWN
Indicates that the status is unkown.

Example

switch# show nae-agent

--

--

Agent Name Script Name Version

Origin Disabled Status Time Series Count Error

--

--

com.arubanetworks.monitor.agent com.arubanetworks.monitor 1.0

user true Unkown 0 NONE

interface_monitor.agent interface_tx_rx_stats_monitor 2.3

user true Unknown 168 NONE

com.arubanetworks.wildcard.vlan.agent com.arubanetworks.wildcard.vlan 1.0

user false Unknown 0 ERROR

system_resource_monitor.default system_resource_monitor 1.3

system false Normal 6 None

Command History

Release Modification

10.07 or earlier --

Command Information

Platforms Command context Authority

6200
6300
6400
8320
8325
8360
8400

Manager (#) Administrators or local user group members with execution rights
for this command.

show nae-script
show nae-script [vsx-peer]

Description
Shows information about the Aruba Network Analytics Engine scripts that are available on the switch.

Parameter Description

vsx-peer Shows the output from the VSX peer switch. If the switches do not
have the VSX configuration or the ISL is down, the output from the
VSX peer switch is not displayed. This parameter is available on
switches that support VSX.

Usage
This command shows the following information about the Aruba Network Analytics Engine scripts that are
available on the switch:

Script Name
The name of the script. Length: 3 through 80 characters.
Example: system_resource_monitor_mm1.default

Version
The version number of the script.

Origin
The origin of the script:
system

Indicates that the script is provided as part of the system software.
user

Indicates that a user loaded the script.
Status
The current state of the script. Status values are the following:

CREATED

The script has been uploaded to the switch, but script validation has not begun.
ERROR

The script validation process detected an error that would result in execution errors if an agent runs
the script. Resolve the error by modifying the script. For information about the error, see the
Analytics Dashboard of the Web UI.

VALIDATING

The script syntax and components (manifest, parameters, monitor, condition, and action) are in the
process of being validated.

VALIDATED

The script syntax and components (manifest, parameters, monitor, condition, and action) have been
validated and no errors have been found.

Example

switch# show nae-script

Script Name Version Origin Status

fan_monitor 1.0 system VALIDATED

interface_link_flap_monitor 1.0 system VALIDATED

interface_link_state_monitor 1.0 system VALIDATED

interface_tx_rx_stats_monitor 1.0 system VALIDATED

lag_imbalance_monitor 1.0 system VALIDATED

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 126

Network Analytics Engine commands | 127

lag_status_monitor 1.0 system VALIDATED

power_supply_monitor 1.0 system VALIDATED

stp_bpdu_tcn_rate_monitor 1.0 system VALIDATED

system_resource_monitor_mm1.default 1.0 system VALIDATED

system_resource_monitor_mm2.default 1.0 system VALIDATED

temp_sensor_monitor 1.0 system VALIDATED

Command History

Release Modification

10.07 or earlier --

Command Information

Platforms Command context Authority

6200
6300
6400
8320
8325
8360
8400

Manager (#) Administrators or local user group members with execution rights
for this command.

show running-config nae
show running-config nae

Description
Shows the nae-specific running configurations, including the full base64 nae-script content.

Usage
This command can be used in place of show running-config all to include the full base64 nae-script
content.

Example

switch# show running-config nae

nae-script hardware_device_health_monitor false

Iy0qLSBjb2Rpbmc6IHV0Zi04IC0qLQ0KIw0KIyhjKSBDb3B5cmln...

nae-agent hardware_device_health_monitor hw_device_health false

Command History

Release Modification

10.08 Command introduced

Command Information

Platforms Command context Authority

6200
6300
6400
8320
8325
8360
8400

Manager (#) Administrators or local user group members with execution rights
for this command.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 128

Chapter 14
HTTPS server commands

HTTPS server commands

https-server rest access-mode
https-server rest access-mode {read-only | read-write}

Description
Changes the REST API access mode. The default mode is read-write.

Parameter Description

read-write Selects the read/write mode. Allows POST, PUT, and DELETE
methods to be called on all configurable elements in the switch
database.

read-only Selects the read-only mode. Write access to most switch resources
through the REST API is disabled.

Usage
Setting the mode to read-write on the REST API allows POST, PUT, and DELETE methods to be called on all
configurable elements in the switch database.

By default, REST APIs in the device are in the read-write mode. Some switch resources allow POST, PUT, and
DELETE regardless of REST API mode. REST APIs that are required to support the Web UI or the Network
Analytics Engine expose POST, PUT, or DELETE operations, even if the REST API access mode is set to read-
only.

The REST API in read/write mode is intended for use by advanced programmers who have a good
understanding of the system schema and data relationships in the switch database.

Because the REST API in read/write mode can access every configurable element in the database, it is powerful but
must be used with extreme caution: No semantic validation is performed on the data you write to the database,
and configuration errors can destabilize the switch.

On 6300 switches or 6400 switches, by default, the HTTPS server is enabled in read-write mode on the
mgmt VRF. If you enable the HTTPS server on a different VRF, the HTTPS server is enabled in read-only

mode.

Example

switch(config)# https-server rest access-mode read-only

Command History

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 129

HTTPS server commands | 130

Release Modification

10.07 or earlier --

Command Information

Platforms Command context Authority

All platforms config Administrators or local user group members with execution rights
for this command.

https-server session close all
https-server session close all

Description
Invalidates and closes all HTTPS sessions. All existing Web UI and REST sessions are logged out and all real-
time notification feature WebSocket connections are closed.

Usage
Typically, a user that has consumed the allowed concurrent HTTPS sessions and is unable to access the
session cookie to log out manually must wait for the session idle timeout to start another session. This
command is intended as a workaround to waiting for the idle timeout to close an HTTPS session. This
command stops and starts the hpe-restd service, so using this command affects all existing REST sessions,
Web UI sessions, and real-time notification subscriptions.

Example

switch# https-server session close all

Command History

Release Modification

10.07 or earlier --

Command Information

Platforms Command context Authority

All platforms Manager (#) Administrators or local user group members with execution rights
for this command.

https-server vrf
https-server vrf <VRF-NAME>

no https-server vrf <VRF-NAME>

Description

Configures and starts the HTTPS server on the specified VRF. HTTPS server features include the REST API
and the web user interfaces.

The no form of the command stops any HTTPS servers running on the specified VRF and removes the HTTPS
server configuration.

Parameter Description

<VRF-NAME> Specifies the VRF name. Required. Length: Up to 32 alpha numeric
characters.

Usage
By using this command, you enable access to both the Web UI and to the REST API on the specified VRF. You
can enable access on multiple VRFs.

By default, 8320, 8325, 8360, and 8400 Switch Series have an HTTPS server enabled on the mgmt VRF.

By default, the 6200, 6300, and 6400 Switch Series have an HTTPS server enabled on the mgmt VRF and on
the default VRF.

When the HTTPS server is not configured and running, attempts to access the Web UI or REST API result in
404 Not Found errors.

The VRF you select determines from which network the Web UI and REST API can be accessed.

For example:

n If you want to enable access to the REST API and Web UI through the OOBM port (management IP
address), specify the built-in management VRF (mgmt).

n If you want to enable access to the REST API and Web UI through the data ports (for "inband
management"), specify the built-in default VRF (default).

n If you want to enable access to the REST API and Web UI through only a subset of data ports on the
switch, specify other VRFs you have created.

Aruba Network Analytics Engine scripts run in the default VRF, but you do not have to enable HTTPS server
access on the default VRF for the scripts to run. If the switch has custom Aruba Network Analytics Engine
scripts that require access to the Internet, then for those scripts to perform their functions, you must
configure a DNS name server on the default VRF.

Examples
Enabling access on all ports on the switch, specify the default VRF:

switch(config)# https-server vrf default

Enabling access on the OOBM port (management interface IP address), specify the management VRF:

switch(config)# https-server vrf mgmt

Enabling access on ports that are members of the VRF named vrfprogs, specify vrfprogs:

switch(config)# https-server vrf vrfprogs

Enabling access on the management port and ports that are members of the VRF named vrfprogs, enter
two commands:

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 131

HTTPS server commands | 132

switch(config)# https-server vrf mgmt

switch(config)# https-server vrf vrfprogs

The 6200 switches support only two VRFs. One management VRF and one default VRF. You cannot add another
VRF.

Command History

Release Modification

10.07 or earlier --

Command Information

Platforms Command context Authority

All platforms config Administrators or local user group members with execution rights
for this command.

show https-server
show https-server [vsx-peer]

Description
Shows the status and configuration of the HTTPS server. The REST API and web user interface are accessible
only on VRFs that have the HTTPS server features configured.

Parameter Description

vsx-peer Shows the output from the VSX peer switch. If the switches do not
have the VSX configuration or the ISL is down, the output from the
VSX peer switch is not displayed. This parameter is available on
switches that support VSX.

Usage
Shows the configuration of the HTTPS server features.
VRF

Shows the VRFs, if any, for which HTTPS server features are configured.
REST Access Mode

Shows the configuration of the REST access mode:
read-write

POST, PUT, and DELETE methods can be called on all configurable elements in the switch database. This is the
default value.
read-only

Write access to most switch resources through the REST API is disabled.

Examples

switch# show https-server

HTTPS Server Configuration

VRF : default, mgmt

REST Access Mode : read-write

Max sessions per user : 6

Session timeout : 20

Command History

Release Modification

10.07 or earlier --

Command Information

Platforms Command context Authority

All platforms Manager (#) Administrators or local user group members with execution rights
for this command.

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 133

Chapter 15
Support and Other Resources

Support and Other Resources

Accessing Aruba Support

Aruba Support Services https://www.arubanetworks.com/support-services/

Aruba Support Portal https://asp.arubanetworks.com/

North America telephone 1-800-943-4526 (US & Canada Toll-Free Number)

+1-408-754-1200 (Primary - Toll Number)

+1-650-385-6582 (Backup - Toll Number - Use only when all other
numbers are not working)

International telephone https://www.arubanetworks.com/support-services/contact-
support/

Be sure to collect the following information before contacting Support:

n Technical support registration number (if applicable)
n Product name, model or version, and serial number
n Operating system name and version
n Firmware version
n Error messages
n Product-specific reports and logs
n Add-on products or components
n Third-party products or components

Other useful sites
Other websites that can be used to find information:

Airheads social forums and Knowledge
Base

https://community.arubanetworks.com/

Software licensing https://lms.arubanetworks.com/

End-of-Life information https://www.arubanetworks.com/support-services/end-of-life/

Aruba software and documentation https://asp.arubanetworks.com/downloads

Accessing Updates
You can access updates from the Aruba Support Portal or the HPE My Networking Website.

Aruba Support Portal

AOS-CX 10.08 Network Analytics Engine Guide | (6200, 6300, 6400, 8xxx Switch Series) 134

https://www.arubanetworks.com/support-services/
https://asp.arubanetworks.com/
https://www.arubanetworks.com/support-services/contact-support/
https://www.arubanetworks.com/support-services/contact-support/
https://community.arubanetworks.com/
https://lms.arubanetworks.com/
https://www.arubanetworks.com/support-services/end-of-life/
https://asp.arubanetworks.com/downloads

Support and Other Resources | 135

https://asp.arubanetworks.com/downloads

If you are unable to find your product in the Aruba Support Portal, you may need to search My Networking,
where older networking products can be found:

My Networking
https://www.hpe.com/networking/support

To view and update your entitlements, and to link your contracts and warranties with your profile, go to the
Hewlett Packard Enterprise Support CenterMore Information on Access to Support Materials page:

https://support.hpe.com/portal/site/hpsc/aae/home/

Access to some updates might require product entitlement when accessed through the Hewlett Packard
Enterprise Support Center. You must have an HP Passport set up with relevant entitlements.

Some software products provide a mechanism for accessing software updates through the product
interface. Review your product documentation to identify the recommended software update method.

To subscribe to eNewsletters and alerts:

https://asp.arubanetworks.com/notifications/subscriptions (requires an active Aruba Support Portal (ASP)
account to manage subscriptions). Security notices are viewable without an ASP account.

Warranty Information
To view warranty information for your product, go to https://www.arubanetworks.com/support-
services/product-warranties/.

Regulatory Information
To view the regulatory information for your product, view the Safety and Compliance Information for Server,
Storage, Power, Networking, and Rack Products, available at https://www.hpe.com/support/Safety-
Compliance-EnterpriseProducts

Additional regulatory information
Aruba is committed to providing our customers with information about the chemical substances in our
products as needed to comply with legal requirements, environmental data (company programs, product
recycling, energy efficiency), and safety information and compliance data, (RoHS and WEEE). For more
information, see https://www.arubanetworks.com/company/about-us/environmental-citizenship/.

Documentation Feedback
Aruba is committed to providing documentation that meets your needs. To help us improve the
documentation, send any errors, suggestions, or comments to Documentation Feedback (docsfeedback-
switching@hpe.com). When submitting your feedback, include the document title, part number, edition,
and publication date located on the front cover of the document. For online help content, include the
product name, product version, help edition, and publication date located on the legal notices page.

https://asp.arubanetworks.com/downloads
https://www.hpe.com/networking/support
https://support.hpe.com/portal/site/hpsc/aae/home/
https://asp.arubanetworks.com/notifications/subscriptions
https://www.arubanetworks.com/support-services/product-warranties/
https://www.arubanetworks.com/support-services/product-warranties/
https://www.hpe.com/support/Safety-Compliance-EnterpriseProducts
https://www.hpe.com/support/Safety-Compliance-EnterpriseProducts
https://www.arubanetworks.com/company/about-us/environmental-citizenship/
mailto:docsfeedback-switching@hpe.com
mailto:docsfeedback-switching@hpe.com

	Contents
	About this document
	Applicable products
	Latest version available online
	Command syntax notation conventions
	About the examples
	Identifying switch ports and interfaces
	Identifying modular switch components

	Aruba Network Analytics Engine Introduction
	AOS-CX Web UI for Analytics introduction
	Aruba Network Analytic Engine scripts introduction
	Aruba Network Analytic agents introduction
	Built-in scripts and agents
	Aruba-certified scripts
	Aruba Solutions Exchange (ASE) introduction
	User-created scripts
	Developer communities for the Network Analytics Engine
	Aruba Solution Exchange (ASE)
	GitHub
	Airheads Community

	Aruba Network Analytics Engine supported maximums

	AOS-CX Network Analytics Engine (NAE) Design considerations
	NAE factors that impact system resources
	NAE deployment considerations
	Considerations when writing an NAE agent

	Aruba Network Analytics Engine framework
	Configuration and state database
	Time series database
	AOS-CX REST API
	Python and the REST API for scripts
	Sandboxes for agent actions

	Managing scripts
	Managing NAE scripts across switch software updates
	Viewing script details using the Web UI
	Downloading a script using the Web UI
	Uploading a script using the Web UI
	Updating a script using the Web UI
	Deleting a script using the Web UI
	Getting information about scripts using the REST API
	Uploading a script using the REST API
	Updating a script using the REST API
	Deleting a script using the REST API
	Downloading a script from the switch using the REST API
	show running-config command output for agents and scripts
	Script status

	Managing agents
	Viewing a list of agents installed on a switch using the Web UI
	Viewing agent information using the Web UI
	Finding alert details using the Web UI
	Working with an Analytics time series graph
	Customizing data displayed on the graph
	Zooming in on the graph
	Downloading the graph as animage or .csv file
	Viewing an alert on the graph

	Enabling a disabled agent using the Web UI
	Disabling an agent using the Web UI
	Deleting an agent using the Web UI
	Creating an agent from an existing script using the Web UI
	Changing the configuration of an agent using the Web UI
	Getting information about agents using the REST API
	Creating an agent from an existing script using the REST API
	Enabling an agent using the REST API
	Disabling an agent using the REST API
	Changing the configuration of an agent using the REST API
	Deleting an agent using the REST API
	Procedure

	Agent status
	Behaviors when multiple agents monitor the same resource

	Troubleshooting agent and script issues
	Showing the current and maximum number of agents, monitors, and scripts
	High switch CPU and memory usage are affecting switch performance
	Downloading NAE support files
	NAE support file content

	Error: Switch time and browser time are not in sync
	Analytics time series graph displays message instead of data: Agent data not ...
	Inaccurate or no data displayed in analytics time series graph
	URI errors
	Error: The NAE Agent is not created...DB constraint violation errors
	Error: The NAE Agent has Python errors.
	Error: Timeseries data cannot be generated...The URI is invalid or not config...
	Error: The script syntax is invalid
	Error: The script agent syntax is invalid
	Error: Sandbox timed out while running script
	Error: The agent instantiated sandbox has timed out
	Error: Unable to parse condition expression...
	Error: The CLI command is invalid
	Error: Command failed: non-zero exit status
	Error: The action is invalid
	ActionShell output error: not available in enhanced secure mode

	Using the Aruba Solutions Exchange (ASE)
	Finding NAE scripts on the ASE website
	Finding NAE scripts on the ASE using the Web UI
	Viewing recent changes to existing NAE solutions
	Downloading or installing a script from the ASE using the Web UI
	Downloading a solution from the ASE website to your workstation

	NAE scripts repository on GitHub
	Scripts and security
	Scripts
	Python version and library support
	Python modules available
	Third-party Python libraries available

	REST API version support
	Rules for script files
	Script example
	Parts of a script
	Header
	Import statements
	Manifest
	Required items
	Optional items

	Parameter definitions
	ParameterDefinitions description

	Agent class constructor
	Graph
	Title
	on_agent_re_enable
	on_agent_restart
	on_parameter_change
	Baselines for dynamic thresholds for monitors
	Baseline workflow and considerations
	Example of baselines in a time series graph
	Example of a script that uses baselines
	Baseline

	ADCs
	ADCList class
	ADCEntry class

	Monitors
	URIs for monitors
	Path component of the URI
	Query component of the URI
	Wildcard characters in monitored URIs
	Parameters in monitored URIs
	Slash (/) characters in monitored URIs
	Attribute filters in monitored URIs
	Constructing a URI using the AOS-CX REST API Reference

	Aggregate operators
	Aggregate functions
	Nested aggregate functions and operators
	Aggregate functions in monitors and conditions

	Rules
	Conditions
	Clear conditions
	Condition expression syntax
	Durations, evaluation delays, and pauses in condition expressions
	Conjunction (AND), disjunction (OR), and multiple subconditions
	Function behavior when monitored URI does not contain wildcards
	Function behavior when monitored URI has wildcards

	Actions
	Predefined actions
	ActionCLI, CLI action
	ActionCustomReport
	ActionShell, SHELL action
	ActionSyslog, Syslog action

	Callback actions
	Clear actions
	Alert level functions
	Logging functions

	Agents
	Agents and user authority
	Rules for agent names

	Network Analytics Engine commands
	show nae-agent
	show nae-script
	show running-config nae

	HTTPS server commands
	https-server rest access-mode
	https-server session close all
	https-server vrf
	show https-server

	Support and Other Resources
	Accessing Aruba Support
	Accessing Updates
	Aruba Support Portal
	My Networking

	Warranty Information
	Regulatory Information
	Documentation Feedback

